Orbites périodiques et courbes pseudo-holomorphes. Application à la conjecture de Weinstein en dimension 3

François Laudenbach

Séminaire Bourbaki (1993-1994)

  • Volume: 36, page 309-333
  • ISSN: 0303-1179

How to cite

top

Laudenbach, François. "Orbites périodiques et courbes pseudo-holomorphes. Application à la conjecture de Weinstein en dimension 3." Séminaire Bourbaki 36 (1993-1994): 309-333. <http://eudml.org/doc/110189>.

@article{Laudenbach1993-1994,
author = {Laudenbach, François},
journal = {Séminaire Bourbaki},
keywords = {contact manifold; symplectic manifold; characteristic foliation; compact foliations; periodic orbits; pseudo-holomorphic curves},
language = {fre},
pages = {309-333},
publisher = {Société Mathématique de France},
title = {Orbites périodiques et courbes pseudo-holomorphes. Application à la conjecture de Weinstein en dimension 3},
url = {http://eudml.org/doc/110189},
volume = {36},
year = {1993-1994},
}

TY - JOUR
AU - Laudenbach, François
TI - Orbites périodiques et courbes pseudo-holomorphes. Application à la conjecture de Weinstein en dimension 3
JO - Séminaire Bourbaki
PY - 1993-1994
PB - Société Mathématique de France
VL - 36
SP - 309
EP - 333
LA - fre
KW - contact manifold; symplectic manifold; characteristic foliation; compact foliations; periodic orbits; pseudo-holomorphic curves
UR - http://eudml.org/doc/110189
ER -

References

top
  1. [AL] M. Audin, J. Lafontaine, eds., Holomorphic curves in symplectic geometry, Birkhäuser, 1994. Zbl0802.53001MR1274923
  2. [Be1] D. Bennequin, Entrelacements et équations de Pfaff, Astérisque103- 108 (1983), 83-161. Zbl0573.58022MR753131
  3. [Be2] D. Bennequin, Caustique mystique [d'après Arnold et al.], Sém. Bourbaki, Astérisque133-134 (1986), 19-56. Zbl0632.58011MR837213
  4. [Be3] D. Bennequin, Problèmes elliptiques, surfaces de Riemann et structures symplectiques [d'après M. Gromov], Sém. Bourbaki, Astérisque145- 146 (1987), 111-136. Zbl0644.53031MR880029
  5. [BG] E. Bedford, B. Gaveau, Envelopes of holomorphy of certain 2-spheres in C2, Amer. J. of Math.105 (1983), 975-1009. Zbl0535.32008MR708370
  6. [Ber] H. Berestycki, Solutions périodiques de systèmes hamiltoniens, Sém. Bourbaki, Astérisque105-106 (1983), 105-128. Zbl0526.58016MR728984
  7. [Bers] L. Bers, An outline of the theory of pseudo-analytic functions, Bull. Amer. Math. Soc.62 (1956), 291-331. Zbl0072.07703MR81936
  8. [Bi] E. Bishop, Differentiable manifolds in complex Euclidian space, Duke Math. J. Zbl0154.08501MR200476
  9. [El1] Y. Eliashberg, Classification of overtwisted contact structures on 3- manifolds, Invent. Math.98 (1989), 623-637. Zbl0684.57012MR1022310
  10. [El2] Y. Eliashberg, Filling by holomorphic discs and its applications, London Math. Soc. Lect. Notes Ser.151 (1991), 45-67. Zbl0731.53036MR1171908
  11. [El3] Y. Eliashberg, Contact 3-manifolds, twenty years since J. Martinet's work, Ann. Inst. Fourier42 (1992), 165-192. Zbl0756.53017MR1162559
  12. [Ga] P. Gauduchon, The canonical almost complex structure on the manifold of 1-jets of pseudo-holomorphic mappings between two almost complex manidolds, p. 69-74 in [AL]. 
  13. [Gi1] E. Giroux, Convexité en topologie de contact, Comment. Math. Helv.66 (1991), 637-677. Zbl0766.53028MR1129802
  14. [Gi2] E. Giroux, Topologie de contact en dimension trois [autour de travaux de Yakov Eliashberg], Sém. Bourbaki, Astérisque216 (1993), 7-34. Zbl0793.53037MR1246390
  15. [Gr] M. Gromov, Pseudo holomorphic curves in symplectic manifolds, Invent. math.82 (1985), 307-347. Zbl0592.53025MR1554036
  16. [Hed] G. Hedlund, Fuchsian groups and transitive horocycles, Duke Math. Journal2 (1936), 530-542. Zbl0015.10201MR1545946JFM62.0392.03
  17. [Hem] J. Hempel, 3-manifolds, Annals of Math. Studies, Princeton Univ. Press, 1976. Zbl0345.57001MR415619
  18. [Her] M. Herman, Exemples de flots hamiltoniens dont aucune perturbation en topologie C∞ n'a d'orbites périodiques sur un ouvert de surfaces d'énergie, C. R. Acad. Sc. Paris série I Math.312 (1991), 989-994. Zbl0759.58016
  19. [Ho] H. Hofer, Pseudoholomorphic curves in symplectizations with applications to the Weinstein conjecture in dimension three, Invent. Math.114 (1993), 515-563. Zbl0797.58023MR1244912
  20. [HV] H. Hofer, C. Viterbo, The Weinstein conjecture in the presence of holomorphic spheres, Comm. Pure Appl. Math.45 (1992), 583-622. Zbl0773.58021MR1162367
  21. [HW] H. Hofer, K. Wysocki, communication orale. 
  22. [Lab] F. Labourie, communication orale. 
  23. [LF] L. Lusternik, A. Fet, Variational problems on closed manifolds, Dokl. Akad. Nauk SSSR81 (1951), 17-18. Zbl0045.20903MR44760
  24. [Ma] J. Martinet, Formes de contact sur les variétés de dimension trois, p. 142-163 in Proceedings of Liverpool Singularities Symposium II, L.N.M.209, Springer, 1971. Zbl0215.23003MR350771
  25. [Mc1] D. McDuff, The structure of rational and ruled symplectic 4-manifolds, J. of AMS3 (1990), 672-712. Zbl0723.53019MR1049697
  26. [Mc2] D. McDuff, The local behaviour of holomorphic curves in almost complex 4-manifolds, J. of Diff. Geo.34 (1991), 143-164. Zbl0736.53038MR1114456
  27. [Mc3] D. McDuff, Symplectic manifolds with contact type boundaries, Invent. math.103 (1991), 651-671. Zbl0719.53015MR1091622
  28. [Mc4] D. McDuff, Singularities and positivity of intersections of J-holomorphic curves, p. 191-215 in [AL]. MR1274930
  29. [Mi] J. Milnor, On the 3-dimensional Brieskorn manifolds M(p,q,r), p. 175-225 in : Knots, groups and 3-manifolds, (papers dedicated to the memory of R.H. Fox, ed. by L. Neuwirth, Annals of Math. Studies84, Princeton Univ. Press, 1975. Zbl0305.57003MR418127
  30. [Mu] M.-P. Muller, Gromov's Schwarz lemma as an estimate of the gradient for holomorphic curves, p. 217-231 in [AL]. MR1274931
  31. [MW] M. Micallef, B. White, The structure of branch points in minimal surfaces and pseudoholomorphic curves, preprint 1994. 
  32. [Pa] P. Pansu, Compactness, p. 233-249 in [AL]. MR1274932
  33. [Ra] P. Rabinowitz, Periodic solutions of Hamiltonian systems, Comm. Pure Appl. Math.31 (1978), 157-184. Zbl0358.70014MR467823
  34. [Si] J.-C. Sikorav, Some properties of holomorphic curves in almost complex manifolds, p. 165-189 in [AL]. MR1274929
  35. [SU] J. Sacks, K. Uhlenbeck, The existence of minimal immersions of two spheres, Ann. of Math.113 (1981), 1-24. Zbl0462.58014MR604040
  36. [Ve] I.N. Vekua, Generalized analytical functions, Pergamon, London, 1962. MR150320
  37. [Vi] C. Viterbo, A proof of the Weinstein conjecture in R2n, Ann. Inst. Henri Poincaré, Analyse non linéaire 4 (1987), 337-357. Zbl0631.58013MR917741
  38. [We] A. Weinstein, On the hypotheses of Rabinowitz's periodic orbit theorems, J. Diff. Eq.33 (1979), 353-358. Zbl0388.58020MR543704

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.