Anosov flows and non-Stein symplectic manifolds

Yoshihiko Mitsumatsu

Annales de l'institut Fourier (1995)

  • Volume: 45, Issue: 5, page 1407-1421
  • ISSN: 0373-0956

Abstract

top
We simplify and generalize McDuff’s construction of symplectic 4-manifolds with disconnected boundary of contact type in terms of the linking pairing defined on the dual of 3-dimensional Lie algebras. This leads us to an observation that an Anosov flow gives rise to a bi-contact structure, i.e. a transverse pair of contact structures with different orientations, and the construction turns out to work for 3-manifolds which admit Anosov flows with smooth invariant volume. Finally, new examples of bi-contact structures are given and related dynamical problems around bi-contact structures are raised.

How to cite

top

Mitsumatsu, Yoshihiko. "Anosov flows and non-Stein symplectic manifolds." Annales de l'institut Fourier 45.5 (1995): 1407-1421. <http://eudml.org/doc/75164>.

@article{Mitsumatsu1995,
abstract = {We simplify and generalize McDuff’s construction of symplectic 4-manifolds with disconnected boundary of contact type in terms of the linking pairing defined on the dual of 3-dimensional Lie algebras. This leads us to an observation that an Anosov flow gives rise to a bi-contact structure, i.e. a transverse pair of contact structures with different orientations, and the construction turns out to work for 3-manifolds which admit Anosov flows with smooth invariant volume. Finally, new examples of bi-contact structures are given and related dynamical problems around bi-contact structures are raised.},
author = {Mitsumatsu, Yoshihiko},
journal = {Annales de l'institut Fourier},
keywords = {Anosov flows; contact structures; convex symplectic structures},
language = {eng},
number = {5},
pages = {1407-1421},
publisher = {Association des Annales de l'Institut Fourier},
title = {Anosov flows and non-Stein symplectic manifolds},
url = {http://eudml.org/doc/75164},
volume = {45},
year = {1995},
}

TY - JOUR
AU - Mitsumatsu, Yoshihiko
TI - Anosov flows and non-Stein symplectic manifolds
JO - Annales de l'institut Fourier
PY - 1995
PB - Association des Annales de l'Institut Fourier
VL - 45
IS - 5
SP - 1407
EP - 1421
AB - We simplify and generalize McDuff’s construction of symplectic 4-manifolds with disconnected boundary of contact type in terms of the linking pairing defined on the dual of 3-dimensional Lie algebras. This leads us to an observation that an Anosov flow gives rise to a bi-contact structure, i.e. a transverse pair of contact structures with different orientations, and the construction turns out to work for 3-manifolds which admit Anosov flows with smooth invariant volume. Finally, new examples of bi-contact structures are given and related dynamical problems around bi-contact structures are raised.
LA - eng
KW - Anosov flows; contact structures; convex symplectic structures
UR - http://eudml.org/doc/75164
ER -

References

top
  1. [1] D. BENNEQUIN, Topologie symplectique, convexité holomorphe et structures de contact, d'après Y. Eliashberg, D. McDuff et al., Séminaire Bourbaki, 725 (1989-1990). Zbl0755.32009
  2. [2] Y. ELIASHBERG, Topological characterization of Stein Manifolds of dimension &gt; 2, International J. Math., 1 (1990), 19-46. Zbl0699.58002
  3. [3] Y. ELIASHBERG, Contact 3-manifolds twenty years since J. Martinet's work, Ann. Inst. Fourier, Grenoble, 42 (1-2) (1991), 165-192. Zbl0756.53017MR93k:57029
  4. [4] Y. ELIASHBERG and M. GROMOV, Convex symplectic manifolds, Proc. Symp. Pure Math. A.M.S., 52 (2) (1991), 135-162. Zbl0742.53010MR93f:58073
  5. [5] P. FOULON, Preprint in preparation. 
  6. [6] H. GEIGES, Preprints. 
  7. [7] E. GHYS, Flots d'Anosov dont les feuilletages stables sont différentiables, Ann. Scient. École Norm. Sup., 20 (1987), 251-270. Zbl0663.58025MR89h:58153
  8. [8] S. GOODMAN, Dehn surgery and Anosov flows in Proc. Geom. Dynamics Conf., Springer Lecture Notes in Mathematics, 1007 (1983). Zbl0532.58021
  9. [9] R.C. GUNNING and H. ROSSI, Analytic functions of several complex variables, Prentice-Hall Inc., Englewood Cliffs N.J., 1965. Zbl0141.08601MR31 #4927
  10. [10] M. HANDEL and W.P. THURSTON, Anosov flows on new 3-manifolds, Invent. Math., 59 (1980), 95-103. Zbl0435.58019MR81i:58032
  11. [11] M. HIRSCH, C. Pugh and M. SHUB, Invariant manifolds, Springer Lecture Notes in Mathematics, 583 (1977). Zbl0355.58009MR58 #18595
  12. [12] F. LAUDENBACH, Orbites périodiques et courbes pseudo-holomorphes, application à la conjecture de Weinstein en dimension 3, d'après H. Hofer et al., Séminaire Bourbaki, 786 (1993-1994). Zbl0853.57013
  13. [13] D. MCDUFF, Examples of simply-connected non-Kählerian manifolds, J. Diff. Geom., 20 (1984), 267-277. Zbl0567.53031MR86c:57036
  14. [14] D. MCDUFF, Symplectic manifolds with contact type boundaries, Invent. Math., 103 (1991), 651-671. Zbl0719.53015MR92e:53042
  15. [15] Th. PETERNELL, Pseudoconvexity, the Levi problem and vanishing theorems, Encyclopeadia of Mathematical Sciences, 74, Several complex variables VII, Chapter VIII, Springer-Verlag, Berlin (1994). Zbl0811.32011
  16. [16] W.P. THURSTON, Some simple examples of symplectic manifolds, Proc. Amer. Math. Soc., 55 (1976), 467-468. Zbl0324.53031MR53 #6578
  17. [17] A. WEINSTEIN, On the hypotheses of Rabinowtz's periodic orbit theorems, J. Diff. Eq., 33 (1979), 353-358. Zbl0388.58020MR81a:58030b

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.