Quantum integrable systems

Michael Semenov-Tian-Shansky

Séminaire Bourbaki (1993-1994)

  • Volume: 36, page 365-387
  • ISSN: 0303-1179

How to cite

top

Semenov-Tian-Shansky, Michael. "Quantum integrable systems." Séminaire Bourbaki 36 (1993-1994): 365-387. <http://eudml.org/doc/110191>.

@article{Semenov1993-1994,
author = {Semenov-Tian-Shansky, Michael},
journal = {Séminaire Bourbaki},
keywords = {Gaudin model; loop algebras; -matrices; Lax operators; factorization; Casimirs; symmetric algebra; generalized Bethe ansatz; quantum integrability},
language = {eng},
pages = {365-387},
publisher = {Société Mathématique de France},
title = {Quantum integrable systems},
url = {http://eudml.org/doc/110191},
volume = {36},
year = {1993-1994},
}

TY - JOUR
AU - Semenov-Tian-Shansky, Michael
TI - Quantum integrable systems
JO - Séminaire Bourbaki
PY - 1993-1994
PB - Société Mathématique de France
VL - 36
SP - 365
EP - 387
LA - eng
KW - Gaudin model; loop algebras; -matrices; Lax operators; factorization; Casimirs; symmetric algebra; generalized Bethe ansatz; quantum integrability
UR - http://eudml.org/doc/110191
ER -

References

top
  1. [A] Adler M., On a trace functional for formal pseudodifferential operators and the symplectic structure for the KdV type equations, Invent. Math. 50, 219-248 (1979). Zbl0393.35058MR520927
  2. [B] Baxter R.J., Exactly Solved Models in Statistical Mechanics. Academic Press, London, 1982. Zbl0723.60120MR690578
  3. [BD] Belavin A.A., Drinfeld V.G., Triangle equations and simple Lie algebras, Sov. Sci. Rev., 4C, 93-165 (1983). Zbl0553.58040MR768939
  4. [BF] Babujian H.M., Flume R., Off-shell Bethe ansatz equations for Gaudin magnets and solutions of KZ equations, Preprint Bonn-HE- 93-30. Zbl1020.82542
  5. [DE] Ding J., Etingof P., Center of a quantum affine algebra at the critical level. Preprint. Yale University, hep-th 9403064 (1994). Zbl0833.17008MR1302390
  6. [D] Drinfeld V.G., Quantum Groups. Proc. ICM-86 (Berkeley), vol. 1, p. 798. AMS, 1987. MR934283
  7. [F1] Faddeev L.D.Quantum Completely Integrable Systems in Quantum Field Theory. Sov. Sci. Rev.lC, 107-155 (1980). Zbl0569.35064
  8. [F2] Faddeev L.D.Integrable Models in (1+1)-dimensional Quantum Field Theory. Les Houches1982. Elsevier Science Publ.1984. MR782509
  9. [FRT] Faddeev L.D., Reshetikhin N.Yu., Takhtajan L.A.Quantization of Lie groups and Lie algebras. Leningrad Math. J., 1, 178-207 (1989). Zbl0715.17015MR1015339
  10. [FT1] Faddeev L.D., Takhtajan L.A., Quantum Inverse Scattering Method. Russian Math. Surveys, 34:5, 11-68, (1979). 
  11. [FT2] Faddeev L.D., Takhtajan L.A., Hamiltonian Methods in the Theory of Solitons. Springer, 1987. Zbl0632.58004MR905674
  12. [FV] Faddeev L.D., Volkov A.Yu., Abelian current algebra and the Virasoro algebra on the lattice. Phys. Lett. B315, 311-318 (1993). Zbl0864.17042MR1238474
  13. [FeiFr] Feigin B., Frenkel E., Affine Kac-Moody algebras at the critical level and Gelfand-Dikij algebras, Int. J. Mod. Phys.A7, Suppl. 1A (1992), 197-215. Zbl0925.17022MR1187549
  14. [FeiFrR] Feigin B., Frenkel E., and Reshetikhin N., Gaudin model, Bethe ansatz and correlation functions at the critical level. Preprint hep-th 9401 (1994). Zbl0812.35103MR1309540
  15. [FrR] Frenkel I.B., Reshetikhin N.Yu., Quantum affine algebras and holonomic difference equations. Commun. Math. Phys.146, 1-60 (1992). Zbl0760.17006MR1163666
  16. [G] Gaudin M., La Fonction d'Onde de Bethe. Masson, Paris, 1983. Zbl0509.60093MR693905
  17. [GGKM] Gardner C.S., Green J.M., Kruskal M.D., Miura R.M., Method for solving the KdV equation, Phys. Rev. Lett.19, 1095-1097 (1967). Zbl1103.35360
  18. [HW] Harnad J., Winternitz P., Classical and quantum integrable systems in gl(2)+* and separation of variables. Preprint CRM 1921, Montreal1993. 
  19. [J] Jurčo B., Classical Yang-Baxter equation and quantum integrable systems. J. Math. Phys. 30, 1289-1293 (1989). Zbl0692.58015MR995770
  20. [K] Kostant B., Quantization and Representation Theory. In: Representation Theory of Lie Groups, Proc. SRC/LMS Res. Symp., Oxford1977. London Math. Soc. Lecture Notes Series, 34, 287-316 (1979). Zbl0474.58010
  21. [KuS] Kulish P.P., Sklyanin E.K., Quantum Spectral Transform Method. In: Integrable Quantum Field Theories. Lecture Notes in Physics151, 61-119, Springer, 1981. Zbl0734.35071MR671263
  22. [Kuz] Kuznetsov V., Equivalence of two graphical calculi. J.Phys. A25, 6005-6026. Zbl0784.53056MR1193839
  23. [L] Lax P.D., Integrals of nonlinear equations and solitary waves. Commun. Pure Appl. Math., 21, 467-490, 1968. Zbl0162.41103MR235310
  24. [RS] Reshetikhin N.Yu., Semenov-Tian-Shansky M.A., Central extensions of quantum current groups. Lett. Math. Phys.19, 133-142 (1990). Zbl0692.22011MR1039522
  25. [RV] Reshetikhin N.Yu., Varchenko A., Quasiclassical asymptotics of the KZ equations. Preprint. 1993. 
  26. [S1] Sklyanin E.K., On complete integrability of the Landau-Lifshitz equation. Preprint LOMI, E-3-79, Leningrad, 1979. Zbl0449.35089
  27. [S2] Sklyanin E.K., Quantum Inverse Scattering Method. Selected Topics. In: Quantum Groups and Quantum Integrable Systems. Ge M.L., ed. World Scientific, Singapore, 1992. MR1239668
  28. [STF] Sklyanin E.K., Takhtajan L.A., Faddeev L.D., The quantum inverse scattering method. I. Theor. Math. Phys.101, 194-220 (1979). 
  29. [Sm] Smirnov F.A., Form Factors in Completely Integrable Models of Quantum Field Theory. Adv. Series in Math. Phys.14, World Scientific, Singapore, 1992. Zbl0788.46077MR1253319
  30. [T] Tarasov V.O., Irreducible monodromy matrices for the R-matrix of the XXZ-model and lattice local quantum Hamiltonians. Theor. Math. Phys.63, 440-454 (1985). MR800062
  31. [TV] Tarasov V.O., Varchenko A., Jackson integral representations for solutions of the quantized KZ equation. St. Petersburg Math. J.6, 1994. 

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.