Mirror symmetry in dimension 3

Maxim Kontsevich

Séminaire Bourbaki (1994-1995)

  • Volume: 37, page 275-293
  • ISSN: 0303-1179

How to cite

top

Kontsevich, Maxim. "Mirror symmetry in dimension 3." Séminaire Bourbaki 37 (1994-1995): 275-293. <http://eudml.org/doc/110202>.

@article{Kontsevich1994-1995,
author = {Kontsevich, Maxim},
journal = {Séminaire Bourbaki},
keywords = {mirror symmetry; Calabi-Yau manifolds; string theories; variation of Hodge structures; holomorphic anomaly equations},
language = {eng},
pages = {275-293},
publisher = {Société Mathématique de France},
title = {Mirror symmetry in dimension 3},
url = {http://eudml.org/doc/110202},
volume = {37},
year = {1994-1995},
}

TY - JOUR
AU - Kontsevich, Maxim
TI - Mirror symmetry in dimension 3
JO - Séminaire Bourbaki
PY - 1994-1995
PB - Société Mathématique de France
VL - 37
SP - 275
EP - 293
LA - eng
KW - mirror symmetry; Calabi-Yau manifolds; string theories; variation of Hodge structures; holomorphic anomaly equations
UR - http://eudml.org/doc/110202
ER -

References

top
  1. [1] P.S. Aspinwall, B.R. Green and D.R. Morrison, The monomial-divisor mirror map, Int. Math. Res. Notices (1993), 319-337, alg-geom/9309007. Zbl0798.14030MR1253648
  2. [2] P.S. Aspinwall, B.R. Green and D.R. Morrison, Calabi-Yau moduli space, mirror manifolds and space-time topology change in string theory, Nucl. Phys. B416 (1994), 414-480, hep-th/9309097. Zbl0899.32006MR1274435
  3. [3] P.S. Aspinwall and D.R. Morrison, Topological field theory and rational curves, Comm. Math. Phys.151 (1993), 245-262. Zbl0776.53043MR1204770
  4. [4] V.V. Batyrev, Dual polyhedra and mirror symmetry for Calabi-Yau hypersurfaces in toric varieties, Jour. Alg. Geom.3 (1994), 493-535, alg-geom/9310003. Zbl0829.14023MR1269718
  5. [5] V.V. Batyrev and L.A. Borisov, Dual cones and mirror symmetry for generalized Calabi-Yau manifolds, alg-geom/9402002. 
  6. [6] V.V. Batyrev and D. van Straten, Generalized hypergeometric functions and rational curves on Calabi-Yau complete intersections in toris varieties, alg-geom/ 9307010. Zbl0843.14016
  7. [7] A. Beauville, Variétés kählériennes dont la première classe de Chern est nulle, Jour. Diff. Geom.18 (1983), 755-782. Zbl0537.53056MR730926
  8. [8] M. Bershadsky, S. Cecotti, H. Ooguri and C. Vafa, Holomorphic anomalies in topological field theories, with an appendix by S. Katz, Nucl. Phys. B405 (1993), 298-304. Zbl0908.58074MR1240687
  9. [9] M. Bershadsky, S. Cecotti, H. Ooguri and C. Vafa, Kodaira-Spencer theory of gravity and exact results for quantum string amplitudes, Comm. Math. Phys.165 (1994), 311-427. Zbl0815.53082MR1301851
  10. [10] J. Bertin and D. Markushevich, Singularités quotients non abéliennes de dimension 3 et variétés de Bogomolov, Prépublication de l'Institut Fourier216 (1992). 
  11. [11] F.A. Bogomolov, Hamiltonian Kähler manifolds, Dokl. Akad. Nauk SSSR245 (1978), 1101-1104. Zbl0418.53026MR514769
  12. [12] F.A. Bogomolov, On the decomposition of Kähler manifolds with trivial canonical class, Math. USSR Sbornik22 (1974), 580-583. Zbl0304.32016MR338459
  13. [13] E. Calabi, The space of Kähler metrics, in Proceedings of the International Congress of Mathematicians (Amsterdam1954), Vol. 2, pp. 206-207. 
  14. [14] P. Candelas, E. Derrick and L. Parkes, Generalized Calabi-Yau manifolds and the mirror of a rigid manifold, Nucl. Phys. B407 (1993), 115-154. Zbl0899.32011MR1242064
  15. [15] P. Candelas, C.A. Lütken and R. Schimmrigk, Complete intersection Calabi-Yau manifolds. II. Three generation manifolds, Nucl. Phys. B306 (1988), 113-136. MR952965
  16. [16] P. Candelas, X.C. de la Ossa, A. Font, S. Katz and D.G. Morrison, Mirror symmetry for two-parameter models (I), Nucl. Phys. B416 (1994), 481-562, hep-th/9308083. Zbl0899.14017MR1274436
  17. [17] P. Candelas, X.C. de la Ossa, P.S. Green and L. Parkes, A pair of Calabi-Yau manifolds as an exactly soluble superconformal theory, Nucl. Phys. B359 (1991), 21-74, and also in [60], pp. 31-95. Zbl1098.32506MR1191420
  18. [18] P. Candelas, A. Font, S. Katz and D.G. Morrison, Mirror symmetry for two-parameter models - II, Nucl. Phys. B429 (1994), 624-674, hep-th/9403187. Zbl1020.32506
  19. [19] H. Clemens, Double solids, Adv. Math.47 (1983), 107-230. Zbl0509.14045MR690465
  20. [20] L.J. Dixon, Some world-sheet properties of superstring compactifications, on orbifolds and otherwise, Superstrings, Unified Theories and Cosmology1987 (G. Furlan et al. eds.), World Scientific, Singapore, 1988, pp. 67-126. MR1104035
  21. [21] G. Ellingsrud and S.A. Strømme, The number of twisted cubic curves on the general quintic threefold, Math. Scan., to appear. Zbl0863.14033MR1345086
  22. [22] R. Friedman, On threefolds with trivial canonical bundle, Complex Geometry and Lie Theory (Proc. Symp. Pure Math., vol. 53), American Mathematical Society, Providence, 1991, pp. 103-134. Zbl0753.14035MR1141199
  23. [23] K. Gawedzky, Conformal field theory, Séminaire Bourbaki1988/89, n° 704, in Astérisque177-178, pp. 95-126. Zbl0699.53085MR1040570
  24. [24] B.R. Green, D.R. Morrison and M.R. Plesser, Mirror symmetry in higher dimension, hep-th/9402119. 
  25. [25] B.R. Green and M.R. Plesser, Duality in Calabi-Yau moduli space, Nucl. Phys. B338 (1990), 15-37. MR1059831
  26. [26] P.S. Green and T. Hübsch, Connecting moduli spaces of Calabi-Yau threefolds, Comm. Math. Phys.119 (1988), 431-441. Zbl0684.53077MR969210
  27. [27] P. Green, T. Hübsch and C.A. Lütken, All the Hodge numbers for all Calabi-Yau complete intersections, Class. Quantum Grav.6 (1989), 105-124. Zbl0657.53063MR979162
  28. [28] M. Gromov, Pseudo holomorphic curves in symplectic manifolds, Invent. Math.82 (1985), 307-347. Zbl0592.53025MR1554036
  29. [29] F. Hirzebruch, Some examples of threefolds with trivial canonical bundle, Gesammelte Abhandlungen, Bd. II, Springer-Verlag, 1987, pp. 757-770. 
  30. [30] S. Hosono, A. Klemm, S. Theisen and S.-T. Yau, Mirror symmetry, mirror map and applications to Calabi-Yau hypersurfaces, Comm. Math. Phys.167 (1995), 301-350, hep-th/9308122. Zbl0814.53056MR1316509
  31. [31] S. Hosono, A. Klemm, S. Theisen and S.-T. Yau, Mirror symmetry, mirror map and applications to complete intersections Calabi-Yau spaces, Nucl. Phys. B433 (1995), 501-544, hep-th/9406055. Zbl1020.32508MR1319280
  32. [32] M. Jinzenji and M. Nagura, Mirror Symmetry and An Exact Calculation of N—2 Point Correlation Function on Calabi-Yau Manifold embedded in CPN-1, hep-th/9409029. Zbl1044.14510
  33. [33] S. Katz, Rational curves on Calabi-Yau manifolds: verifying predictions of mirror symmetry, Projective Geometry with Applications (E. Ballico, ed.), Marcel Dekker, 1994, pp. 231-239, alg-geom/9301006. Zbl0839.14043MR1302954
  34. [34] M. Kontsevich, Enumeration of rational curves via toric actions, MPI preprint 94-39, 1994, hep-th/9405035. 
  35. [35] W. Lerche, C. Vafa and N. Warner, Chiral rings in N = 2 superconformal theories, Nucl. Phys. B324 (1984), 427-474. MR1025424
  36. [36] B. Lian and S.-T. Yau, Mirror Maps, Modular Relations and Hypergeometric Series I, hep-th/9507151. Zbl0957.32501
  37. [37] A. Libgober and J. Teitelbaum, Lines on Calabi-Yau complete intersections, mirror symmetry and Picard-Fuchs equations, Intern. Math. Res. Not.1 (1993), 29-39. Zbl0789.14005MR1201748
  38. [38] Yu. Manin, Generating functions in algebraic geometry and sums over trees, MPI preprint, 1994, alg-geom/9407005. MR1363064
  39. [39] D. Markushevich, Resolution of C3/H168, preprint. 
  40. [40] D.G. Markushevich, M.A. Olshanetsky and A.M. Perelomov, Description of a class of superstring compactifications related to semi-simple Lie algebras, Comm. Math. Phys.111 (1987), 247-274. Zbl0628.53065MR899851
  41. [41] D. McDuff and D. Salamon, J-holomorphic curves and quantum cohomology, University Lecture Series, vol. 6, American Mathematical Society, Providence, 1994. Zbl0809.53002MR1286255
  42. [42] D. Morrison, Mirror symmetry and rational curves on quintic threefolds: A guide for mathematicians, J. Amer. Math. Soc.6 (1993), 223-247. Zbl0843.14005MR1179538
  43. [43] D. Morrison, Picard-Fuchs equations and mirror maps for hypersurfaces, in [60], pp. 241-264. Zbl0841.32013MR1191426
  44. [44] D. Morrison, Making enumerative predictions by means of mirror symmetry, alg-geom/9504013. 
  45. [45] Z. Ran, Deformations of manifolds with torsion or negative canonical bundle, J. Alg. Geom.1 (1992), 279-291. Zbl0818.14003MR1144440
  46. [46] M. Reid, The moduli space of 3-folds with K = 0 may nevertheless be irreducible, Math. Ann.278 (1987), 329-334. Zbl0649.14021MR909231
  47. [47] S.S. Roan, On the generalization of Kummer surfaces, Jour. Diff. Geom.30 (1983), 523-537. Zbl0661.14031MR1010170
  48. [48] S.S. Roan, On c1 = 0 resolution of quotient singularity, preprint. Zbl0856.14005MR1284568
  49. [49] S.S. Roan and S.-T. Yau, On Ricci flat 3-fold, Acta Math. Sinica (N. S.)3 (1987), 256-288. Zbl0649.14024MR916270
  50. [50] Y. Ruan, Topological sigma model and Donaldson type invariants in Gromov theory, preprint, 1993. MR1390655
  51. [51] Y. Ruan and G. Tian, A mathematical theory of quantum cohomology, Math. Res. Lett.1 (1994), 269-278. Zbl0860.58006MR1266766
  52. [52] G. Segal, The definitions of conformal field theory, in Links Between Geometry and Mathematical Physics, MPI preprint 87-58, 1987, pp. 13-17. MR981378
  53. [53] G. Tian, Smoothness of the universal deformation space of compact Calabi-Yau manifolds and its Peterson-Weil metric, in "Mathematical Aspects of String Theory" (S.-T. Yau, ed.), World Scientific, Singapore, 1987, pp. 629-646. Zbl0696.53040MR915841
  54. [54] G. Tian, Smoothing 3-folds with trivial canonical bundle and ordinary double points, in [60], pp. 458-479. Zbl0829.32012MR1191437
  55. [55] A. Todorov, The Weil-Petersson geometry of the moduli space of SU(n ≥ 3) (Calabi-Yau) manifolds, I, Comm. Math. Phys.126 (1989), 325-346. Zbl0688.53030
  56. [56] C. Voisin, Miroirs et involutions sur les surfaces K3, Journées de Géométrie Algébrique d'Orsay (Juillet 1992), Astérisque, vol. 218, Société Mathématique de France, 1993, pp. 273-323. Zbl0818.14014MR1265318
  57. [57] C.T.C. Wall, Classification problems in topology V : On certain 6-manifolds, Invent. Math.1 (1966), 355-374. Zbl0149.20601
  58. [58] E. Witten, Mirror manifolds and topological field theory, in [60], 120-159. Zbl0834.58013MR1191422
  59. [59] S.-T. Yau, On the Ricci curvature of a compact Kähler manifold and the complex Monge-Ampere equation. I, Comm. Pure and Appl. Math.31 (1978), 339-411. Zbl0369.53059MR480350
  60. [60] S.-T. Yau (ed.), Essays on Mirror Manifolds, International Press Co., Hong Kong (1992). Zbl0816.00010MR1191418
  61. [tangent61] S.-T. Yau, Compact three-dimensional Kähler manifolds with zero Ricci curvature, Symposium on Anomalies, Geometry, Topology (Chicago, Ill., 1985), 395-406. Zbl0643.53050MR850873

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.