Dualités de champs et de cordes

Daniel Bennequin

Séminaire Bourbaki (2001-2002)

  • Volume: 44, page 117-148
  • ISSN: 0303-1179

How to cite

top

Bennequin, Daniel. "Dualités de champs et de cordes." Séminaire Bourbaki 44 (2001-2002): 117-148. <http://eudml.org/doc/110301>.

@article{Bennequin2001-2002,
author = {Bennequin, Daniel},
journal = {Séminaire Bourbaki},
language = {fre},
pages = {117-148},
publisher = {Société Mathématique de France},
title = {Dualités de champs et de cordes},
url = {http://eudml.org/doc/110301},
volume = {44},
year = {2001-2002},
}

TY - JOUR
AU - Bennequin, Daniel
TI - Dualités de champs et de cordes
JO - Séminaire Bourbaki
PY - 2001-2002
PB - Société Mathématique de France
VL - 44
SP - 117
EP - 148
LA - fre
UR - http://eudml.org/doc/110301
ER -

References

top
  1. [1] O. Aharony — « String theory dualities from M-theory », Nuclear Physics B476 (1996), p. 470-483. Zbl0925.81187MR1412113
  2. [2] I. Antoniadis, E. Cremmer & K.S. Stelle — « Les supercordes », in Gazette des Mathématiciens, Soc. Math. France, 2001, 1ère partie, n° 87, janvier; 2ème partie, n° 88, avril. MR1821644
  3. [3] M.F. Atiyah & N.J. Hitchin — The geometry and dynamics of magnetic monopoles, Princeton U.P., 1988. Zbl0671.53001MR934202
  4. [4] C. Bachas — « Lectures on D-branes », in Duality and supersymmetric theories [60]. Zbl0970.81064
  5. [5] G. Benfatto & G. Galavotti — Renormalization group, Physics Notes, vol. 1, Princeton University Press, 1995. Zbl0830.58038MR1380265
  6. [6] J.-B. Bost — « Fibrés déterminants, déterminants régularisés et mesures sur les espaces de modules des courbes complexes », in Sém. Bourbaki, Astérisque, vol. 152-153, Soc. Math. France, 1987, exp. n° 676, p. 113-149. Zbl0655.32021MR936852
  7. [7] L. Braun — Paracelse, de l'Astrologie, Presses Universitaires de Strasbourg, 2002. 
  8. [8] P. Breitenlohner, D. Maison & G. Gibbons - « 4-dimensional black holes from Kaluza-Klein theories », Comm. Math. Physics (1988), p. 295-333. Zbl0661.53064MR973537
  9. [9] R. Coquereaux & A. Jadczyk — « Symmetries of Einstein-Yang-Mills fields and dimensional reductions », Comm. Math. Physics98 (1985), no. 1, p. 79-104. Zbl0589.53076MR785262
  10. [10] E. Cremmer & B. Julia — « The SO(8) supergravity », Nuclear Physics B159 (1979), p. 141-212. MR550003
  11. [11] E. Cremmer, B. Julia, H. Lü & C. Pope - « Dualisation of dualities », Nuclear Physics B523 (1998), p. 73-144. Zbl1031.81599MR1632010
  12. [12] E. Cremmer, B. Julia & J. Scherk — « Supergravity theory in 11 dimensions », Physics Letters B76 (1978), p. 409-412. 
  13. [13] P. Deligne, P. Etingof & Al. (éds.) - Quantum fields and strings : A course for mathematicians, AMS, IAS, 1999. Zbl0984.00503
  14. [14] P.A.M. Dirac — « Quantised Singularities in the Electromagnetic Field », Proc. Roy. Soc. A133 (1931), p. 60-72. Zbl0002.30502
  15. [15] _, « The Theory of Magnetic Poles », Phys. Review74 (1948), p. 817-830. Zbl0034.27604MR27713
  16. [16] M.J. Duff — « M-theory (the theory formerly known as strings) », International Journal of Modern Physics A11 (1996), no. 32, p. 5623-5641. Zbl1044.81692MR1419710
  17. [17] _, « The world in eleven dimensions : a tribute to Oskar Klein », arXiv: hep-th/0111237, 38 pp, 2001. 
  18. [18] M.J. Duff, R.R. Khuri & J.X. Lu — « String solitons », Physics Reports259 (1995), p. 213-326. MR1346456
  19. [19] M.J. Duff, J.T. Liu & R. Minasian — « Eleven-dimensional origin of string/string duality : a one-loop test », Nuclear Physics B452 (1995), p. 261- 282. Zbl0925.81148MR1356403
  20. [20] M.J. Duff, J.T. Liu & J. Rahmfeld — « Four-dimensional string/string/string triality », Nuclear Physics B459 (1996), p. 125-159. Zbl0925.81167MR1372223
  21. [21] M.J. Duff, B.E.W. Nilsson & C.N. Pope - « Kaluza-Klein supergravity », Physics Reports130 (1986), no. 1 & 2, p. 1-142. MR822171
  22. [22] M.J. Duff & K.S. Stelle — « Multi-membrane solutions of D = 11 supergravity », Physics Letters B253 (1991), p. 113-118. MR1089592
  23. [23] J. Ehlers — « Exterior solutions of Einstein's gravitational field equations admitting a two-dimensional abelian group of isometric correspondences », in Colloque sur la théorie de la relativité1959, Centre Belge Rech. Math., 1959, p. 49-57. Zbl0097.21801MR115760
  24. [24] S. Ferrara, J. Scherk & B. Zumino — « Algebraic properties of extended supergravity theories », Nuclear Physics B121 (1977), p. 393-402. 
  25. [25] A. Font, L.E.I. Nez, D. Lüst & F. Quevedo — « Strong-weak coupling duality and non-perturbative effects in string theory », Physics Letters B249 (1990), p. 35-43. 
  26. [26] J. Gaunlett — « Supersymmetric monopoles and duality », in Duality and supersymmetric theories [60]. Zbl0970.81075
  27. [27] K. Gawędski — « Conformal field theory », in Sém. Bourbaki, Astérisque, vol. 177-178, Soc. Math. France, 1989, exp. n° 704, p. 95-126. Zbl0699.53085MR1040570
  28. [28] R. Geroch — « A method for generating solutions of Einstein's equations », Journal of Math. Physics12 (1971), no. 6, p. 918-924. Zbl0214.49002MR286442
  29. [29] G.W. Gibbons - « The Sen conjecture for fundamental monopoles of distinct types », Physics Letters B382 (1996), p. 53-59. MR1398847
  30. [30] A. Giveon, M. Porrati & E. Rabinovici — « Target space duality in string theory », Physics Reports244 (1994), p. 77-202. MR1288936
  31. [31] J. Glimm & A. Jaffe — Quantum physics, a functional integral point of view, Springer-Verlag, 1981. Zbl0461.46051MR628000
  32. [32] P. Goddard, J. Nuyts & D. Olive - « Gauge theory and magnetic charge », Nuclear Physics B125 (1977), p. 1-28. MR443696
  33. [33] M.B. Green, J.H. Schwarz & E. Witten — Superstring theory, vol. 1 & 2, Cambridge University Press, 1987. Zbl0619.53002MR878143
  34. [34] R. Güven — « Black p-brane solutions of D = 11 supergravity theory », Physics Letters B276 (1992), p. 49-55. MR1153191
  35. [35] A. Hanany & E. Witten — « Type IIB superstrings, PBS monopoles, and three-dimensional gauge dynamics », Nuclear Physics B492 (1997), p. 152-190. Zbl0996.58509MR1451054
  36. [36] J.A. Harvey & G. Moore — « Algebras, BPS states, and strings », Nuclear Physics B463 (1996), p. 315-368. Zbl0912.53056MR1393643
  37. [37] S. Hawking & G. Ellis — The large scale structure of space-time, Cambridge University Press, 1973. Zbl0265.53054MR424186
  38. [38] W. Heisenberg — Les principes de la théorie de quanta, Gauthier-Villars, 1972. Zbl0086.22202
  39. [39] M. Henningson & G. Moore — « Counting curves with modular forms », Nuclear Physics B472 (1999), p. 518-528. Zbl0925.14027MR1399277
  40. [40] N. Hitchin — « The Yang-Mills equation and the topology of 4-manifolds (after Simon K. Donaldson) », in Sém. Bourbaki, Astérisque, vol. 105-106, Soc. Math. France, 1983, exp. n° 606, p. 167-178. Zbl0533.57007MR728987
  41. [41] _, « Lectures on special Lagrangian submanifolds », arXiv:math.DG/ 9907034 v1, 6/7/99. Zbl1079.14522MR1876068
  42. [42] G. 't Hooft — Under the spell of the gauge principle, Advanced Series in Mathematical Physics, vol. 19, World Scientific, 1994. Zbl0881.53063MR1337269
  43. [43] _, « The renormalization group in QFT », in Under the spell of the gauge principle [42]. 
  44. [44] G. 't Hooft & M. Veltman — « Diagrammar », in Under the spell of the gauge principle [42]. 
  45. [45] K. Hori & C. Vafa - « Mirror Symmetry », arXiv:hep-th/00022V3, mars 2000. 
  46. [46] P. Hořava & E. Witten — « Heterotic and Type I string dynamics from eleven dimensions », Nuclear Physics B460 (1996), p. 506-524. Zbl1004.81525MR1381609
  47. [47] C.M. Hull & P.K. Townsend — « Unity of superstring dualities », Nuclear Physics B438 (1995), p. 109-137. Zbl1052.83532MR1321523
  48. [48] C. Itzykson & J.B. Zuber — Quantum field theory, McGraw-Hill, 1980. MR585517
  49. [49] B. Julia — « Dualities in the classical supergravity limits », arXiv:hep-th/ 9805083. 
  50. [50] _, « Magics of M-gravity », arXiv:hep-th/0105031 v1. Zbl0978.83049
  51. [51] B. Julia & A. Zee — « Poles with both magnetic and electric charges in non-Abelian gauge theory », Phys. Rev. D11 (1975), p. 22-27 à 22-32. 
  52. [52] A. Konechny & A.S. Schwartz — « On (k ⊕ l|q)-Dimensional Supermanifolds », in Supersymmetry and Quantum Field Theory, Proc. Kharkov, Ukraine1997 (J. Weiss & V.P. Akulov, éds.), L. N. in Physics, vol. 509, Springer, 1998, p. 201-206. Zbl0937.58001
  53. [53] M. Kontsevich — « Mirror symmetry in dimension 3 », in Sém. Bourbaki, Astérisque, vol. 237, Soc. Math. France, 1996, exp. n° 801, p. 275-293. Zbl0880.14019MR1423628
  54. [54] R.P. Langlands — « Problems in the theory of automorphic forms », in Lectures in Modern Analysis and Applications III, Lect. Notes in Math., vol. 170, Springer, 1970. Zbl0225.14022MR302614
  55. [55] K. Lee, E. Weinberg & P. Yi — « Moduli space of many BPS monopoles for arbitrary gauge groups », Phys. Rev D54 (1996), p. 1633-1643. Zbl1099.58500MR1404609
  56. [56] Y.I. Manin — Gauge field theory and complex geometry, Springer-Verlag, 1984. Zbl0641.53001MR954833
  57. [57] C.W. Misner, K.S. Thorne & J.A. Wheeler — Gravitation, W.H. Freeman and Co., San Francisco, Calif., 1973. MR418833
  58. [58] C. Montonen & D. Olive - « Magnetic monopoles as gauge particles », Physics Letters B72 (1977), p. 117-120. 
  59. [59] N.A. Obers & B. Pioline — « U-duality and M-theory », Physics Reports318 (1999), p. 113-225. MR1713479
  60. [60] D. Olive & P. West (éds.) - Duality and supersymmetric theories, Publications of the Newton Institute, Cambridge University Press, 1999. Zbl0919.00030MR1703504
  61. [61] H. Osborn — « Topological charges for N = 4 supersymmetric gauge theories and monopoles of spin 1 », Physics Letters B83 (1979), p. 321-326. 
  62. [62] T. Paracelse — Volumen (Medicinae) Paramirum, Sudhoff, 1525. 
  63. [63] M.E. Peskin & D.V. Schroeder — An introduction to Quantum Field Theory, Addison-Wesley Publishing Company, 1995. MR1402248
  64. [64] J. Polchinski — « Renormalization and effective lagrangians », Nuclear Physics B231 (1984), p. 261-295. 
  65. [65] _, « Combinatorics of boundaries in string theory », Physical Review D50 (1994), p. 6041-6045. MR1304002
  66. [66] _, « String duality », Reviews of Modern Physics68 (1996), p. 1245-1258. MR1414673
  67. [67] _, « Dirichlet-branes and Ramond-Ramond charges », arXiv:hep-ph/ 9510017 V3, novembre 1995. Zbl1020.81797MR1366179
  68. [68] J. Polchinski & E. Witten — « Evidence for heterotic-Type I string duality », Nuclear Physics B460 (1996), p. 525-540. Zbl1004.81526MR1381610
  69. [69] A.M. Polyakov — Gauge fields and strings, Contemporary concepts in Physics, vol. 3, Harwood Academic Publishers, 1987. MR1122810
  70. [70] M.K. Prasad & C.M. Sommerfield — « Exact Solution for the 't Hooft Monopole and the Julia-Zee Dyon », Phys. Rev. Letters35 (1975), p. 760-762. 
  71. [71] S.-J. Rey — « Confining phase of superstrings and axionic strings », Physical ReviewD43 (1991), p. 526-538. MR1087004
  72. [72] V. Rivasseau — From perturbative to constructive renormalization, Princeton Series in Physics, Princeton University Press, 1991. MR1174294
  73. [73] A. Rogers — « A global theory of supermanifolds », J. Math. Phys.21 (1980), no. 6, p. 1352-1365. Zbl0447.58003MR574696
  74. [74] A.S. Schwartz — « On the definition of superspace », Theoret. and Math. Phys.60 (1984), no. 1, p. 657-660. Zbl0575.58005MR760438
  75. [75] J.H. Schwarz & A. Sen — « Duality symmetries of 4D-heterotic strings », Physics Letters B312 (1993), p. 105-114. MR1233713
  76. [76] J. Schwinger — « Magnetic Charge in Quantum Field Theory », Phys. Rev.144 (1966), p. 1087-1093. MR195447
  77. [77] G. Segal — « Notes on quantum field theory », http://online.itp.ucsb.edu/online/geom99/segal1_n/. 
  78. [78] N. Seiberg & E. Witten — « Electric magnetic duality, monopole condensation and confinement in N = 2 supersymmetric Yang-Mills theory », Nuclear Physics B426 (1994), p. 19-52. Zbl0996.81510MR1293681
  79. [79] _, « Monopoles, duality and chiral symmetric breaking in N = 2 supersymmetric QCD », Nuclear Physics B431 (1994), p. 484-550. Zbl1020.81911MR1306869
  80. [80] A. Sen — « Dyon monopole bound states, self-dual harmonic forms on the multimonopole moduli space, and SL2 (Z) invariance in string theory », Physics Letters B329 (1994), p. 217-221. MR1281578
  81. [81] _, « An introduction to non-perturbative string theory », in Duality and supersymmetric theories [60], p. 297-413. Zbl0970.81063MR1703514
  82. [82] D. Sorokin — « Superbranes and superembeddings », Physics Reports329 (2000), p. 1-101. MR1752973
  83. [83] A. Strominger, S.-T. Yau & E. Zaslow — « Mirror symmetry is T-duality », Nuclear Physics B479 (1996), p. 243-259. Zbl0896.14024MR1429831
  84. [84] P.K. Townsend — « The eleven-dimensional supermembrane revisited », Physics Letters B350 (1995), p. 184-188. MR1331064
  85. [85] J. Wess & J. Bagger — Supersymmetry and supergravity, 2ème éd., Princeton University Press, 1992. Zbl0516.53060MR1152804
  86. [86] K.G. Wilson — « Renormalization of a scalar field theory in strong coupling », Physical Review D 6 (1972), no. 2, p. 419-426. 
  87. [87] _, « The renormalization group : Critical phenomena and the Kondo problem », Review of Modern Physics47 (1975), p. 773-840. MR438986
  88. [88] _, « The renormalization group and critical phenomena », Reviews of Modern Physics55 (1983), no. 3, p. 583-600. MR709078
  89. [89] E. Witten — « Overview of K-theory applied to strings », arXiv:hep-th/ 0007175 v1. MR1827946
  90. [90] _, « Deconstruction, G2 holonomy, and Doublet-Triplet splitting », arXiv: Hep-ph/0201018 V2, 15.01.2002. 
  91. [91] _, « Dyons of charge eθ/2π », Physics Letters B86 (1979), p. 283-287. 
  92. [92] _, « String theory dynamics in various dimensions », Nuclear Physics B443 (1995), p. 85-126. Zbl0990.81663MR1334520
  93. [93] _, « Strong coupling and the cosmological constant », Modern Physics Letters A10 (1995), p. 2153-2155. Zbl1022.81798MR1357367
  94. [94] _, « Bound states of strings and p-branes », Nuclear Physics B460 (1996), p. 335-350. Zbl1003.81527MR1377168
  95. [95] _, « Five-branes and M-theory on an orbifold », Nuclear Physics B463 (1996), p. 383-397. Zbl1004.81534MR1393645
  96. [96] _, « Solutions of four-dimensional field theories via M-theory », Nuclear Physics B500 (1997), p. 3-42. Zbl0934.81066MR1471647
  97. [97] _, « Duality, spacetime and quantum mechanics », Physics today (May 1997), p. 28-33. 
  98. [98] E. Witten & D. Olive - « Supersymmetry algebras that include topological charges », Physics Letters B78 (1978), p. 97-101. 
  99. [99] D. Zwanziger — « Exactly Soluble Non-relativistic Model of Particles with Both Electric and Magnetic Charges », Phys. Rev. 176 (1968), no. 5, p. 1480-1495. 

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.