Classification des algèbres de Lie simples

Olivier Mathieu

Séminaire Bourbaki (1998-1999)

  • Volume: 41, page 245-286
  • ISSN: 0303-1179

How to cite

top

Mathieu, Olivier. "Classification des algèbres de Lie simples." Séminaire Bourbaki 41 (1998-1999): 245-286. <http://eudml.org/doc/110261>.

@article{Mathieu1998-1999,
author = {Mathieu, Olivier},
journal = {Séminaire Bourbaki},
keywords = {simple Lie algebra of Cartan type; differential form; volume form; symplectic form; contact form; Poisson bracket; divided power algebra; sandwich element; recognition theorems; simple Lie algebras; Lie algebras of classical type; de Rham cohomology; Melikyan algebras; Cartan subalgebras},
language = {fre},
pages = {245-286},
publisher = {Société Mathématique de France},
title = {Classification des algèbres de Lie simples},
url = {http://eudml.org/doc/110261},
volume = {41},
year = {1998-1999},
}

TY - JOUR
AU - Mathieu, Olivier
TI - Classification des algèbres de Lie simples
JO - Séminaire Bourbaki
PY - 1998-1999
PB - Société Mathématique de France
VL - 41
SP - 245
EP - 286
LA - fre
KW - simple Lie algebra of Cartan type; differential form; volume form; symplectic form; contact form; Poisson bracket; divided power algebra; sandwich element; recognition theorems; simple Lie algebras; Lie algebras of classical type; de Rham cohomology; Melikyan algebras; Cartan subalgebras
UR - http://eudml.org/doc/110261
ER -

References

top
  1. [BGOSW] G.M. Benkart, T.B. Gregory, J.M. Osborn, H. Strade et R.L. Wilson - Isomorphism classes of Hamiltonian Lie algebras. In Lie algebras, Madison1987, Springer. Lecture Notes in Math.1373 (1989), 42-57. Zbl0677.17012MR1007323
  2. [BOS] G.M. Benkart, J.M. Osborn et H. Strade - Contributions to the classification of simple modular Lie algebras, Trans. Amer. Math. Soc.341 (1994), 227-252. Zbl0792.17016MR1129435
  3. [BW1] R.E. Block et R.L. Wilson - The restricted simple Lie algebras are of classical or Cartan type, Proc. Nat. Acad. Sci. U.S.A.81 (1984), 5271-5274. Zbl0542.17003MR758423
  4. [BW2] R.E. Block et R.L. Wilson - Restricted simple Lie algebras. In Lie algebras and related topics (Windsor, Ont., 1984), Amer. Math. Soc. CMS Conf. Proc.5 (1986), 3-17. Zbl0582.17009MR832192
  5. [BW3] R.E. Block et R.L. Wilson - Classification of the restricted simple Lie algebras, J. Algebra114 (1988), 115-259. Zbl0644.17008MR931904
  6. [Cn] E. Cartan, Les groupes de transformations continus, infinis, simples, Ann. Sci. Ecole Norm. Sup.26 (1909), 93-161. Zbl40.0193.02MR1509105JFM40.0193.02
  7. [Cr] P. Cartier - Une nouvelle opération sur les formes différentielles, C. R. Acad. Sci. Paris244 (1957), 426-428. Zbl0077.04502MR84497
  8. [J1] N. Jacobson - Abstract derivation and Lie algebra, Trans. Amer. Math. Soc.42 (1937), 206-224. Zbl0017.29203MR1501922JFM63.0873.03
  9. [J2] N. Jacobson - Lie algebras, Interscience Tracts in Pure and Applied Mathematics, 10 (1962). Zbl0121.27504MR143793
  10. [GM] I.M. Gelfand et O. Mathieu - On the cohomology of the Lie algebra of hamiltonian vector fields, J. of Funct. Anal.108 (1992), 347-360. Zbl0783.17009MR1176679
  11. [G] V. Guillemin - Infinite dimensional primitive Lie algebra, J. differential geometry4 (1970), 257-282. Zbl0223.17007MR268233
  12. [Kc1] V.G. Kac - Simple graded Lie algebras of finite growth, Math. USSR Izv.2 (1968), 1271-1311. Zbl0222.17007
  13. [Kc2] V.G. Kac - The classification of the simple Lie algebras over a field with non-zero characteristic, Izv. Akad. Nauk SSSR Ser. Mat.34 (1970), 385-408. Zbl0254.17007MR276286
  14. [Kc3] V.G. Kac - Global Cartan pseudogroups and simple Lie algebras in characteristic p (en russe), Usp. Math. Nauk26 (1971), 199-200. Zbl0261.17009MR311731
  15. [Kz] N.M. Katz - A conjecture in the arithmetic theory of differential equations, Bull. Soc. Math. France110 (1982), 203-239. Zbl0504.12022MR667751
  16. [KS] A.I. Kostrikin et I.R. Shafarevitch - Cartan pseudo-groups and Lie p-algebras, Soviet Dokl.7 (1966), 715-718. Zbl0158.03803
  17. [Ma] O. Mathieu - Classification of simple graded Lie algebras of finite growth, Inv. Math.108 (1992), 455-519. Zbl0769.17018MR1163236
  18. [Me] G.M. Melikian -Simple Lie algebras of characteristic 5, Uspekhi Mat. Nauk35 (1980), 203-204. Zbl0429.17011MR565576
  19. [MS] W.H. Mills et G.B. Seligman -Lie algebras of classical type, J. Math. Mech.6 (1957), 519-548. Zbl0079.04804MR89193
  20. [PS] A. Premet et H. Strade - Simple Lie algebras of small characteristic, I, Sandwich elements. J. Algebra189 (1997), 419-480. Zbl0878.17019MR1438184
  21. [Se1] G.B. Seligman - On a class of semisimple restricted Lie algebras, Proc. Nat. Acad. Sci. U.S.A.40 (1954), 726-728. Zbl0055.26504MR64763
  22. [Se2] G.B. Seligman - A survey of Lie algebras of characteristic p, Report of a conference on linear algebras, National Academy of Sciences-National Research Council. 502 (1956), 24-32. Zbl0095.25503MR94373
  23. [Se3] G.B. Seligman - Some remarks on classical Lie algebras, J. Math. Mech.6 (1957), 549-558. Zbl0079.04901MR89194
  24. [Stb] R. Steinberg - Lectures on Chevalley groups. Notes, Yale University (1967). MR466335
  25. [St1] H. Strade - The classification of the simple modular Lie algebras, III. Solution of the classical case. Ann. of Math.133 (1991), 577-604. Zbl0736.17021MR1109354
  26. [St2] H. Strade - The classification of the simple modular Lie algebras: a revised approach, Hadronic mechanics and nonpotential interactions, Part 1 (Cedar Falls, IA, 1990), Nova Sci. Publ. (1992), 79-99. Zbl0790.17012MR1269553
  27. [St3] H. Strade - The classification of the simple modular Lie algebras, II. The toral structure. J. Algebra151 (1992), 425-475. Zbl0776.17018MR1184043
  28. [St4] H. Strade - The classification of the simple Lie algebras over algebraically closed fields with positive characteristic, Jordan algebras (Oberwolfach1992), de Gruyter (1994), 281-299. Zbl0817.17021MR1293322
  29. [St5] H. Strade - The classification of the simple modular Lie algebras, V. Algebras with Hamiltonian two-sections, Abh. Math. Sem. Univ. Hamburg64 (1994), 167-202. Zbl0817.17022MR1292726
  30. [St6] H. Strade - The classification of the simple modular Lie algebras. VI. Solving the final case, Trans. Amer. Math. Soc.350 (1998), 2553-2628. Zbl0923.17020MR1390047
  31. [St7] H. Strade - The classification of simple modular Lie algebras, Preprint. 
  32. [SW] H. Strade et R.L. Wilson - Classification of simple Lie algebras over algebraically closed fields of prime characteristic, Bull. Amer. Math. Soc.24 (1991), 357-362. Zbl0725.17023MR1071032
  33. [T1] J. Tits - Résumé de cours, annuaire du Collège de France (1980-1981), 75-86, et (1981-1982), 91-105. 
  34. [T2] J. Tits - Groupes associés aux algèbres de Kac-Moody, Sém. Bourbaki, Exp. n° 700 (novembre 1988), Astérisque177-178 (1989), 7-31. Zbl0705.17018MR1040566
  35. [T3] J. Tits - Group and group functors attached to Kac-Moody data, Lecture Notes in Math.1111, Springer-Verlag (1985), 193-223. Zbl0572.17010MR797422
  36. [W1] R.L. Wilson - A structural characterization of the simple Lie algebras of generalized Cartan type over fields of prime characteristic, J. Algebra40 (1976), 418-465. Zbl0355.17012MR412239
  37. [W2] R.L. Wilson - Simple Lie algebras of type S, J. Algebra62 (1980), 292-298. Zbl0425.17003MR563228
  38. [W3] R.L. Wilson - The classification problem for simple Lie algebras of characteristic p. In Algebra, Proc. Conf.Carbondale1980, Springer. Lecture Notes in Math.848 (1981), 13-32. Zbl0453.17004MR613174

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.