Méthodes KAM pour les opérateurs de Schrödinger non autonomes
- [1] Dipartimento di Matematica, Università di Bologna, Piazza di Porta S Donato 5, 40127 Bologna, Italy
Séminaire Équations aux dérivées partielles (2001-2002)
- page 1-19
Access Full Article
topAbstract
topHow to cite
topGraffi, Sandro. "Méthodes KAM pour les opérateurs de Schrödinger non autonomes." Séminaire Équations aux dérivées partielles (2001-2002): 1-19. <http://eudml.org/doc/11033>.
@article{Graffi2001-2002,
abstract = {On élimine par la méthode KAM la dépendance temporelle dans une classe d’équations différentielles linéaires en $\ell ^2$ avec dépendance quasi-périodique et non bornée du temps. Ceci entraîne la nature purement ponctuelle du spectre de Floquet de l’opérateur $H_0+\epsilon P(\omega t)$ pour $\epsilon $ petit. Ici $H_0$ est l’opérateur différentiel de Schrödinger ordinaire $\displaystyle -\frac\{d^2\}\{dx^2\}+V$, $V(x)\sim |x|^\{\alpha \}, \alpha >2$ lorsque $|x|\rightarrow \infty $, la perturbation quasi-périodique par rapport au temps $P$ peut diverger comme $\displaystyle |x|^\{\beta \}, \beta <(\alpha -2)/\{2\}$, et le vecteur des fréquences $\omega $ n’est pas résonant. La preuve est fondée sur l’estimation de Kuksin pour les solutions des équations homologiques avec coefficients non constants.},
affiliation = {Dipartimento di Matematica, Università di Bologna, Piazza di Porta S Donato 5, 40127 Bologna, Italy},
author = {Graffi, Sandro},
journal = {Séminaire Équations aux dérivées partielles},
language = {fre},
pages = {1-19},
publisher = {Centre de mathématiques Laurent Schwartz, École polytechnique},
title = {Méthodes KAM pour les opérateurs de Schrödinger non autonomes},
url = {http://eudml.org/doc/11033},
year = {2001-2002},
}
TY - JOUR
AU - Graffi, Sandro
TI - Méthodes KAM pour les opérateurs de Schrödinger non autonomes
JO - Séminaire Équations aux dérivées partielles
PY - 2001-2002
PB - Centre de mathématiques Laurent Schwartz, École polytechnique
SP - 1
EP - 19
AB - On élimine par la méthode KAM la dépendance temporelle dans une classe d’équations différentielles linéaires en $\ell ^2$ avec dépendance quasi-périodique et non bornée du temps. Ceci entraîne la nature purement ponctuelle du spectre de Floquet de l’opérateur $H_0+\epsilon P(\omega t)$ pour $\epsilon $ petit. Ici $H_0$ est l’opérateur différentiel de Schrödinger ordinaire $\displaystyle -\frac{d^2}{dx^2}+V$, $V(x)\sim |x|^{\alpha }, \alpha >2$ lorsque $|x|\rightarrow \infty $, la perturbation quasi-périodique par rapport au temps $P$ peut diverger comme $\displaystyle |x|^{\beta }, \beta <(\alpha -2)/{2}$, et le vecteur des fréquences $\omega $ n’est pas résonant. La preuve est fondée sur l’estimation de Kuksin pour les solutions des équations homologiques avec coefficients non constants.
LA - fre
UR - http://eudml.org/doc/11033
ER -
References
top- V.I. Arnold : Chapitres supplémentaires de la théorie des equations différentielles ordinaires. Mir (Moscou 1980). Zbl0455.34001MR626685
- J.Bellissard, Stability and instability in quantum mechanics, In Trends and Developments in the Eighties, (S.Albeverio and Ph.Blanchard, Editors), World Scientific, Singapore 1985, pp.1-106. Zbl0584.35024MR853743
- D.Bambusi, S.Graffi Time Quasi-periodic unbounded perturbations of Schrödinger operators and KAM methods , Commun.Math.Phys. 177, 327-347 (2001). Zbl1003.37042MR1833810
- M.Combescure, The quantum stability problem for time-periodic perturbation of the harmonic oscillator, An.Inst.H.Poincaré 47, 62-82 (1987) ; Erratum ibidem, 451-454. Zbl0635.70018MR933686
- M.Dimassi, J.Sjöstrand, Spectral Asymptotics in the Semiclassical Limit, London Math.Soc.Lecture Notes Serie 268, Cambridge University Press 1999 Zbl0926.35002MR1735654
- P.Duclos, P.Stovicek, Floquet Hamiltonians with Pure Point Spectrum, Commun.Math.Phys. 177, 327-347 (1996) Zbl0848.34072MR1384138
- P.Duclos, P.Stovicek, M.Vittot : Perturbation of an eigen-value from a dense point spectrum : a general Floquet Hamiltonian. Ann. Inst. H. Poincaré Phys. Théor. 71 241–301 (1999). Zbl0972.81041MR1714346
- G.Gallavotti, The Elements of Mechanics, Springer-Verlag, 1983 Zbl0512.70001MR698947
- S.Graffi, K.Yajima, Absolute Continuity of the Floquet Spectrum for a Nonlinearly Forced Harmonic Oscillator, Commun.Math.Phys., to appear Zbl0983.35042MR1799847
- G. Hagedorn, M. Loss, J. Slawny : Non-stochasticity of time-dependent quadratic Hamiltonians and the spectra of canonical transformations, J.Phys.A 19, 521–531 (1986) Zbl0601.70013MR833433
- J.Howland, Floquet Operators with Singular Spectrum, I, Ann.Inst.H.Poincaré 49, 309-323 (1989) ; II, ibidem, 325-334, (1989) Zbl0689.34023MR1017967
- H.R. Jauslin, F. Monti : Quantum Nekhoroshev theorem for quasi-periodic Floquet Hamiltonians. Rev. Math. Phys. 10 393–428 (1998). Zbl0927.34070MR1626840
- H.R. Jauslin, J.L. Lebowitz : Spectral and stability aspects of quantum chaos. Chaos 1 114–121 (1991). Zbl0899.58059MR1135898
- A.Jorba, C. Simó :On the reducibility of linear differential equations with quasiperiodic coefficients. J. Differential Equations 98 111–124 (1992). Zbl0761.34026MR1168974
- A.Joye, Absence of absolutely continuous spectrum of Floquet operators, J.Stat.Phys. 75, 929-952 (1994) Zbl0835.47010MR1285294
- T.Kappeler, J. Pöschel : Perturbation of KdV Equations – The KAM preuve. Preprint 1997.
- S.B. Kuksin : On small–denominator equations with large variable coefficients J. Appl. Math. Phys. (ZAMP) 48, 262–271, (1997). Zbl0886.35044MR1450394
- G.Nenciu, Floquet operators without absolutely continuous spectrum, Ann.Inst.H.Poincaré 59, 91-97 (1993) Zbl0795.47032MR1244183
- J. Pöschel : A KAM–Theorem for some Partial Differential Equations, Ann. Scuola Norm. Sup. Pisa Cl. Sci. 23, 119–148 (1996). Zbl0870.34060MR1401420
- M.A.Shubin, Pseudodifférential Operators and Spectral Theory , Springer-Verlag 1987 Zbl0616.47040MR883081
- J. Xu, Q. Zheng :On the reducibility of linear différential equations with quasiperiodic coefficients which are degenerate. Proc. Amer. Math. Soc. 126, 1445–1451 (1998). Zbl0897.34011MR1458272
- K.Yajima, Scattering Theory for Schrödinger Operators with Potentials Periodic in Time, J.Math.Soc.Japan 29, 729-743 (1977) Zbl0356.47010MR470525
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.