Perturbation of an eigen-value from a dense point spectrum : a general Floquet hamiltonian

P. Duclos; P. Šťovíček; M. Vittot

Annales de l'I.H.P. Physique théorique (1999)

  • Volume: 71, Issue: 3, page 241-301
  • ISSN: 0246-0211

How to cite

top

Duclos, P., Šťovíček, P., and Vittot, M.. "Perturbation of an eigen-value from a dense point spectrum : a general Floquet hamiltonian." Annales de l'I.H.P. Physique théorique 71.3 (1999): 241-301. <http://eudml.org/doc/76836>.

@article{Duclos1999,
author = {Duclos, P., Šťovíček, P., Vittot, M.},
journal = {Annales de l'I.H.P. Physique théorique},
keywords = {time periodic potential; dense point spectrum; growing gap condition; Rayleigh-Schrödinger perturbation series},
language = {eng},
number = {3},
pages = {241-301},
publisher = {Gauthier-Villars},
title = {Perturbation of an eigen-value from a dense point spectrum : a general Floquet hamiltonian},
url = {http://eudml.org/doc/76836},
volume = {71},
year = {1999},
}

TY - JOUR
AU - Duclos, P.
AU - Šťovíček, P.
AU - Vittot, M.
TI - Perturbation of an eigen-value from a dense point spectrum : a general Floquet hamiltonian
JO - Annales de l'I.H.P. Physique théorique
PY - 1999
PB - Gauthier-Villars
VL - 71
IS - 3
SP - 241
EP - 301
LA - eng
KW - time periodic potential; dense point spectrum; growing gap condition; Rayleigh-Schrödinger perturbation series
UR - http://eudml.org/doc/76836
ER -

References

top
  1. [1] V.I. Arnold, Small divisors II. Proof of the A.N. Kolmogorov Theorem on conservation of conditionally periodic motions under small perturbations of the Hamiltonian function, Usp. Mat. Nauk118 (1963) 13-40. Zbl0129.16606MR163025
  2. [2] J. Bellissard, Stability and instability in quantum mechanics, in: Albeverio and Blanchard, eds., Trends and Developments in the Eighties, Word Scientific, Singapore, 1985, pp. 1-106. Zbl0584.35024MR853743
  3. [3] P.M. Bleher, H.R. Jauslin and J.L. Lebowitz, Floquet spectrum for two-level systems in quasi-periodic time dependent fields, J. Stat. Phys.68 (1992) 271. Zbl0925.58074
  4. [4] K.L. Chung, A Course in Probability Theory, Academic Press, 1970. MR1796326
  5. [5] M. Combescure, The quantum stability problem for time-periodic perturbations of the harmonic oscillator, Ann. Inst. Henri Poincaré47 (1987) 62-82; Erratum, Ann. Inst. Henri Poincaré47 (1987) 451-454. Zbl0628.70017MR933686
  6. [6] P. Duclos and P. Šťovíček, Floquet Hamiltonians with pure point spectrum, Commun. Math. Phys.177 (1996) 327-347. Zbl0848.34072MR1384138
  7. [7] P. Duclos, P. Šťovíček and M. Vittot, Perturbation of an eigen-value from a dense point spectrum: an example, J. Phys. A: Math. Gen.30 (1997) 7167-7185. Zbl0932.81007MR1601924
  8. [8] L.H. Eliasson, Perturbations of stable invariant tori for Hamiltonian systems, Ann. Scuola Norm. Sup. Pisa Cl. Sci.IV (15) (1988) 115-147. Zbl0685.58024MR1001032
  9. [9] V. Enss and K. Veselić, Bound states and propagating states for time-dependent Hamiltonians, Ann. Inst. Henri Poincaré39 (1983) 159-191. Zbl0532.47007MR722684
  10. [10] J.S. Howland, Scattering theory for Hamiltonians periodic in time, Indiana J. Math.28 (1979) 471-494. Zbl0444.47010MR529679
  11. [11] J.S. Howland, Floquet operators with singular spectrum I, Ann. Inst. Henri Poincaré49 (1989) 309-323; Floquet operators with singular spectrum II, Ann. Inst. Henri Poincaré49 (1989) 325-334. Zbl0689.34022MR1017967
  12. [12] A. Joye, Absence of absolutely continuous spectrum of Floquet operators, J. Stat. Phys.75 (1994) 929-952. Zbl0835.47010MR1285294
  13. [13] T. Kato, Perturbation Theory of Linear Operators, Springer, New York, 1966. Zbl0148.12601MR203473
  14. [14] A.N. Kolmogorov, On the conservation of conditionally periodic motions under small perturbations of the Hamiltonian function, Dokl. Akad. Nauk SSSR98 (1954) 527-530. Zbl0056.31502MR68687
  15. [15] A. Messiah, Mécanique Quantique II, Dunod, Paris, 1964. MR129304
  16. [16] J. Moser, On invariant curves of area preserving mappings of an annulus, Nachr. Akad. Wiss. Göttingen, II. Math. Phys. Kl.11a (1962) 1-20. Zbl0107.29301MR147741
  17. [17] G. Nenciu, Floquet operators without absolutely continuous spectrum, Ann. Inst. Henri Poincaré59 (1993) 91-97. Zbl0795.47032MR1244183
  18. [18] C.R. De Oliviera, I. Guarneri and G. Casati, From power-localization to extended quasi-energy eigenstates in a quantum periodically driven system, Europhys. Lett.27 (1994) 187-192. 
  19. [19] M. Reed and B. Simon, Methods of Modern Mathematical Physics IV, Academic Press, New York, 1978. Zbl0401.47001MR751959
  20. [20] F. Rellich, Störungstheorie der Spektralzerlegung, I, Math. Ann.113 (1937) 600- 619. Zbl0016.06201MR1513109JFM62.0452.04
  21. [21] H. Sambe, Steady states and quasienergies of a quantum-mechanical system in a oscillating field, Phys. Rev.A17 (1973) 2203-2213. 
  22. [22] J.H. Shirley, Solution of the Schrödinger equation with a Hamiltonian periodic in time, Phys. Rev.B138 (1965) 979. 
  23. [23] C.L. Siegel, Iterations of analytic functions, Ann. Math.143 (1942) 607-612. Zbl0061.14904
  24. [24] E.M. Stein, Singular Integrals and Differentiability Properties of Functions, Princeton University Press, NJ, 1970. Zbl0207.13501MR290095
  25. [25] K. Yajima, Scattering theory for Schrödinger equations with potential periodic in time, J. Math. Soc. Japan29 (1977) 729-743. Zbl0356.47010MR470525

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.