Perturbation of an eigen-value from a dense point spectrum : a general Floquet hamiltonian
P. Duclos; P. Šťovíček; M. Vittot
Annales de l'I.H.P. Physique théorique (1999)
- Volume: 71, Issue: 3, page 241-301
- ISSN: 0246-0211
Access Full Article
topHow to cite
topDuclos, P., Šťovíček, P., and Vittot, M.. "Perturbation of an eigen-value from a dense point spectrum : a general Floquet hamiltonian." Annales de l'I.H.P. Physique théorique 71.3 (1999): 241-301. <http://eudml.org/doc/76836>.
@article{Duclos1999,
author = {Duclos, P., Šťovíček, P., Vittot, M.},
journal = {Annales de l'I.H.P. Physique théorique},
keywords = {time periodic potential; dense point spectrum; growing gap condition; Rayleigh-Schrödinger perturbation series},
language = {eng},
number = {3},
pages = {241-301},
publisher = {Gauthier-Villars},
title = {Perturbation of an eigen-value from a dense point spectrum : a general Floquet hamiltonian},
url = {http://eudml.org/doc/76836},
volume = {71},
year = {1999},
}
TY - JOUR
AU - Duclos, P.
AU - Šťovíček, P.
AU - Vittot, M.
TI - Perturbation of an eigen-value from a dense point spectrum : a general Floquet hamiltonian
JO - Annales de l'I.H.P. Physique théorique
PY - 1999
PB - Gauthier-Villars
VL - 71
IS - 3
SP - 241
EP - 301
LA - eng
KW - time periodic potential; dense point spectrum; growing gap condition; Rayleigh-Schrödinger perturbation series
UR - http://eudml.org/doc/76836
ER -
References
top- [1] V.I. Arnold, Small divisors II. Proof of the A.N. Kolmogorov Theorem on conservation of conditionally periodic motions under small perturbations of the Hamiltonian function, Usp. Mat. Nauk118 (1963) 13-40. Zbl0129.16606MR163025
- [2] J. Bellissard, Stability and instability in quantum mechanics, in: Albeverio and Blanchard, eds., Trends and Developments in the Eighties, Word Scientific, Singapore, 1985, pp. 1-106. Zbl0584.35024MR853743
- [3] P.M. Bleher, H.R. Jauslin and J.L. Lebowitz, Floquet spectrum for two-level systems in quasi-periodic time dependent fields, J. Stat. Phys.68 (1992) 271. Zbl0925.58074
- [4] K.L. Chung, A Course in Probability Theory, Academic Press, 1970. MR1796326
- [5] M. Combescure, The quantum stability problem for time-periodic perturbations of the harmonic oscillator, Ann. Inst. Henri Poincaré47 (1987) 62-82; Erratum, Ann. Inst. Henri Poincaré47 (1987) 451-454. Zbl0628.70017MR933686
- [6] P. Duclos and P. Šťovíček, Floquet Hamiltonians with pure point spectrum, Commun. Math. Phys.177 (1996) 327-347. Zbl0848.34072MR1384138
- [7] P. Duclos, P. Šťovíček and M. Vittot, Perturbation of an eigen-value from a dense point spectrum: an example, J. Phys. A: Math. Gen.30 (1997) 7167-7185. Zbl0932.81007MR1601924
- [8] L.H. Eliasson, Perturbations of stable invariant tori for Hamiltonian systems, Ann. Scuola Norm. Sup. Pisa Cl. Sci.IV (15) (1988) 115-147. Zbl0685.58024MR1001032
- [9] V. Enss and K. Veselić, Bound states and propagating states for time-dependent Hamiltonians, Ann. Inst. Henri Poincaré39 (1983) 159-191. Zbl0532.47007MR722684
- [10] J.S. Howland, Scattering theory for Hamiltonians periodic in time, Indiana J. Math.28 (1979) 471-494. Zbl0444.47010MR529679
- [11] J.S. Howland, Floquet operators with singular spectrum I, Ann. Inst. Henri Poincaré49 (1989) 309-323; Floquet operators with singular spectrum II, Ann. Inst. Henri Poincaré49 (1989) 325-334. Zbl0689.34022MR1017967
- [12] A. Joye, Absence of absolutely continuous spectrum of Floquet operators, J. Stat. Phys.75 (1994) 929-952. Zbl0835.47010MR1285294
- [13] T. Kato, Perturbation Theory of Linear Operators, Springer, New York, 1966. Zbl0148.12601MR203473
- [14] A.N. Kolmogorov, On the conservation of conditionally periodic motions under small perturbations of the Hamiltonian function, Dokl. Akad. Nauk SSSR98 (1954) 527-530. Zbl0056.31502MR68687
- [15] A. Messiah, Mécanique Quantique II, Dunod, Paris, 1964. MR129304
- [16] J. Moser, On invariant curves of area preserving mappings of an annulus, Nachr. Akad. Wiss. Göttingen, II. Math. Phys. Kl.11a (1962) 1-20. Zbl0107.29301MR147741
- [17] G. Nenciu, Floquet operators without absolutely continuous spectrum, Ann. Inst. Henri Poincaré59 (1993) 91-97. Zbl0795.47032MR1244183
- [18] C.R. De Oliviera, I. Guarneri and G. Casati, From power-localization to extended quasi-energy eigenstates in a quantum periodically driven system, Europhys. Lett.27 (1994) 187-192.
- [19] M. Reed and B. Simon, Methods of Modern Mathematical Physics IV, Academic Press, New York, 1978. Zbl0401.47001MR751959
- [20] F. Rellich, Störungstheorie der Spektralzerlegung, I, Math. Ann.113 (1937) 600- 619. Zbl0016.06201MR1513109JFM62.0452.04
- [21] H. Sambe, Steady states and quasienergies of a quantum-mechanical system in a oscillating field, Phys. Rev.A17 (1973) 2203-2213.
- [22] J.H. Shirley, Solution of the Schrödinger equation with a Hamiltonian periodic in time, Phys. Rev.B138 (1965) 979.
- [23] C.L. Siegel, Iterations of analytic functions, Ann. Math.143 (1942) 607-612. Zbl0061.14904
- [24] E.M. Stein, Singular Integrals and Differentiability Properties of Functions, Princeton University Press, NJ, 1970. Zbl0207.13501MR290095
- [25] K. Yajima, Scattering theory for Schrödinger equations with potential periodic in time, J. Math. Soc. Japan29 (1977) 729-743. Zbl0356.47010MR470525
Citations in EuDML Documents
topNotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.