Floquet operators without absolutely continuous spectrum

G. Nenciu

Annales de l'I.H.P. Physique théorique (1993)

  • Volume: 59, Issue: 1, page 91-97
  • ISSN: 0246-0211

How to cite

top

Nenciu, G.. "Floquet operators without absolutely continuous spectrum." Annales de l'I.H.P. Physique théorique 59.1 (1993): 91-97. <http://eudml.org/doc/76616>.

@article{Nenciu1993,
author = {Nenciu, G.},
journal = {Annales de l'I.H.P. Physique théorique},
keywords = {absolutely continuous spectrum of Floquet operators; time periodic perturbations of discrete Hamiltonians with increasing gaps; coupled pulsed rotors; periodic boundary conditions},
language = {eng},
number = {1},
pages = {91-97},
publisher = {Gauthier-Villars},
title = {Floquet operators without absolutely continuous spectrum},
url = {http://eudml.org/doc/76616},
volume = {59},
year = {1993},
}

TY - JOUR
AU - Nenciu, G.
TI - Floquet operators without absolutely continuous spectrum
JO - Annales de l'I.H.P. Physique théorique
PY - 1993
PB - Gauthier-Villars
VL - 59
IS - 1
SP - 91
EP - 97
LA - eng
KW - absolutely continuous spectrum of Floquet operators; time periodic perturbations of discrete Hamiltonians with increasing gaps; coupled pulsed rotors; periodic boundary conditions
UR - http://eudml.org/doc/76616
ER -

References

top
  1. [1] J.S. Howland, Floquet Operators with Singular Spectrum, Ann. Inst. Henri Poincaré, Vol. 49, 1989, pp. 309-323; J.S. Howland, Floquet Operators with Singular Spectrum. II. Ann. Inst. Poincaré, Vol. 49, 1989, pp. 325-334. Zbl0689.34022MR1017967
  2. [2] J. Bellissard, Stability and Instability in Quantum Mechanics, In Trends and Developments in the Eighties, Albeverio and Blanchard Eds., World Scientific, Singapore, 1985. Zbl0584.35024MR853743
  3. [3] K. Yajima, Scattering Theory for Schrödinger Equations with Potential Periodic in Time, J. Math. Soc. Japan, Vol. 29, 1977, pp. 729-743. Zbl0356.47010MR470525
  4. [4] J.S. Howland, Scattering Theory for Hamiltonians Periodic in Time, Indiana J. Math., Vol. 28, 1978, pp. 471-494. Zbl0444.47010MR529679
  5. [5] G. Nenciu, Asymptotic Invariant Subspaces, Adiabatic Theorems and Block Diagonalisation, in Recent Developments in Quantum Mechanics, A. BOUTET DE MONVEL et al. Eds., Kluver Academic Publishers, Dordrecht, 1991. Zbl0726.34077MR1189402
  6. [6] G. Nenciu, Linear Adiabatic Theory. Exponential Estimates, Commun. Math. Phys., Vol. 152, 1993, pp. 479-496. Zbl0768.34038MR1213299
  7. [7] M.S. Birman, M.G. Krein, On the Theory of Wave and Scattering Operators, Dokl. Acad. Nauk S.S.S.R., Vol. 144, 1962, pp. 475-478 (English translation: Soviet Math., Vol. 3, 1962, pp. 740-744. Zbl0196.45004MR139007
  8. [8] S.G. Krein, Linear Differential Equations in Banach Spaces, AMS Translations of Mathematical Monographs, Vol. 29, Providence, 1971. MR342804
  9. [9] T. Kato, Perturbation Theory for Linear Operators, Springer, Berlin, 1976. MR407617

NotesEmbed ?

top

You must be logged in to post comments.