Some open problems in Banach space theory

Joram Lindenstrauss

Séminaire Choquet. Initiation à l'analyse (1975-1976)

  • Volume: 15, page 1-9

How to cite

top

Lindenstrauss, Joram. "Some open problems in Banach space theory." Séminaire Choquet. Initiation à l'analyse 15 (1975-1976): 1-9. <http://eudml.org/doc/110546>.

@article{Lindenstrauss1975-1976,
author = {Lindenstrauss, Joram},
journal = {Séminaire Choquet. Initiation à l'analyse},
language = {eng},
pages = {1-9},
publisher = {Secrétariat mathématique},
title = {Some open problems in Banach space theory},
url = {http://eudml.org/doc/110546},
volume = {15},
year = {1975-1976},
}

TY - JOUR
AU - Lindenstrauss, Joram
TI - Some open problems in Banach space theory
JO - Séminaire Choquet. Initiation à l'analyse
PY - 1975-1976
PB - Secrétariat mathématique
VL - 15
SP - 1
EP - 9
LA - eng
UR - http://eudml.org/doc/110546
ER -

References

top
  1. [1] Aharoni ( I.). - Every separable metric space is Lipschitz equivalent to a subset of CO , Israel J. Math., t. 19, 1974, p. 284-291. Zbl0303.46012MR511661
  2. [2] Bessaga ( G.) and Pelczynski ( A.). - Selected topics in infinite-dimensional topology. - Warszawa, Polish scientific publisher, 1975 (Polska Akadepia Nauk, Instytut matematycany, Monografie matematyczie, 58). Zbl0304.57001MR478168
  3. [3] Dashiell ( F.K.) and Lindenstrauss ( J.). - Some examples concerning strictly convex norms on C(K) spaces, Israel J. Math., t. 16, 1973, p. 329-342. Zbl0281.46011MR348466
  4. [4] Davie ( A.M.). - The approximation problem for Banach space, Bull. London math. Soc., t. 5, 1973, p. 261-266. Zbl0267.46013MR338735
  5. [5] Davis ( W.J.) and Johnson ( W.B.). - Compact non-nuclear operators, Studia Math., t. 51, 1974, p. 81-85. Zbl0286.47015MR353028
  6. [6] Davis ( W.J.) and Lindenstrauss ( J.). - The ln1 problem and degrees of non reflexivity, II., Studia Math., t. 55, 1976 (to appear). Zbl0344.46031
  7. [7] Enflo ( P.). - On the invariant subspace problem in Banach spaces, Acta Math., Uppsala (to appear). Zbl0663.47003
  8. [8] Figiel ( T.), Lindenstrauss ( J.) and Milman ( V.). - The dimension of almost spherical sections of convex bodies, Bull. Amer. math. Soc., t. 82, 1976, p. 575-578 [see also Séminaire Maurey-Schwartz, 1975/76]. Zbl0329.52003MR420223
  9. [9] Johnson ( W.B.) and Tzafriri ( L.). - On the local structure of subspaces of Banach lattices, Israel J. Math., t. 20, 1975, p. 292-299. Zbl0311.46003MR420210
  10. [10] Lindenstrauss ( J.) and Pelczynski ( A.). - Absolutely summing operators in L p spaces and their applications, Studia Math., t. 29, 1968, p. 275-326. Zbl0183.40501MR231188
  11. [11] Lindenstrauss ( J.) and Tzafriri ( L.). - Classical Banach spaces. - Berlin, Heidelberg, New York, Springer-Verlag, 1973 (Lecture Notes in Mathematics, 338). Zbl0259.46011MR415253
  12. [12] Lindenstrauss ( J.). and Tzafriri ( L.). - The uniform approximation property in Orlicz spaces, Israel J. Math., t. 23, 1976, p. 142-155. Zbl0347.46025MR399806
  13. [13] Maurey ( B.) and Rosenthal ( H.P.). - A ω null sequence without an unconditional basic subsequence, Studia Math. (to appear). 
  14. [14] Ribe ( M.). - On uniformly homeomorphic normed spaces, Arkiv för Math., Djursholm (to appear). Zbl0336.46018MR440340
  15. [15] Rosenthal ( H.P.). - A characterization of Banach spaces containing l1 , Proc. Nat, Acad. Sciences U. S. A., t. 71, 1974, p. 2411-2413. Zbl0297.46013MR358307
  16. [16] Szankowski ( A). - A Banach lattice without the approximation property, Israel J. Math. (to appear). Zbl0336.46013
  17. [17] Talagrand ( M.). - Sur une conjecture de H. H. Corson, Bull. Sc. math., t. 99, 1975, p. 211-212. Zbl0317.46017MR430752

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.