The cofinal property of the reflexive indecomposable Banach spaces

Spiros A. Argyros[1]; Theocharis Raikoftsalis[1]

  • [1] National Technical University of Athens Faculty of Applied Sciences Department of Mathematics Zografou Campus, 157 80, Athens (Greece)

Annales de l’institut Fourier (2012)

  • Volume: 62, Issue: 1, page 1-45
  • ISSN: 0373-0956

Abstract

top
It is shown that every separable reflexive Banach space is a quotient of a reflexive hereditarily indecomposable space, which yields that every separable reflexive Banach is isomorphic to a subspace of a reflexive indecomposable space. Furthermore, every separable reflexive Banach space is a quotient of a reflexive complementably p -saturated space with 1 < p < and of a c 0 saturated space.

How to cite

top

Argyros, Spiros A., and Raikoftsalis, Theocharis. "The cofinal property of the reflexive indecomposable Banach spaces." Annales de l’institut Fourier 62.1 (2012): 1-45. <http://eudml.org/doc/251064>.

@article{Argyros2012,
abstract = {It is shown that every separable reflexive Banach space is a quotient of a reflexive hereditarily indecomposable space, which yields that every separable reflexive Banach is isomorphic to a subspace of a reflexive indecomposable space. Furthermore, every separable reflexive Banach space is a quotient of a reflexive complementably $\ell _p$-saturated space with $1&lt;p&lt;\infty $ and of a $c_0$ saturated space.},
affiliation = {National Technical University of Athens Faculty of Applied Sciences Department of Mathematics Zografou Campus, 157 80, Athens (Greece); National Technical University of Athens Faculty of Applied Sciences Department of Mathematics Zografou Campus, 157 80, Athens (Greece)},
author = {Argyros, Spiros A., Raikoftsalis, Theocharis},
journal = {Annales de l’institut Fourier},
keywords = {Banach space theory; $\ell _p$ saturated; indecomposable spaces; hereditarily indecomposable spaces; interpolation methods; saturated norms; saturated space; reflexive Banach space},
language = {eng},
number = {1},
pages = {1-45},
publisher = {Association des Annales de l’institut Fourier},
title = {The cofinal property of the reflexive indecomposable Banach spaces},
url = {http://eudml.org/doc/251064},
volume = {62},
year = {2012},
}

TY - JOUR
AU - Argyros, Spiros A.
AU - Raikoftsalis, Theocharis
TI - The cofinal property of the reflexive indecomposable Banach spaces
JO - Annales de l’institut Fourier
PY - 2012
PB - Association des Annales de l’institut Fourier
VL - 62
IS - 1
SP - 1
EP - 45
AB - It is shown that every separable reflexive Banach space is a quotient of a reflexive hereditarily indecomposable space, which yields that every separable reflexive Banach is isomorphic to a subspace of a reflexive indecomposable space. Furthermore, every separable reflexive Banach space is a quotient of a reflexive complementably $\ell _p$-saturated space with $1&lt;p&lt;\infty $ and of a $c_0$ saturated space.
LA - eng
KW - Banach space theory; $\ell _p$ saturated; indecomposable spaces; hereditarily indecomposable spaces; interpolation methods; saturated norms; saturated space; reflexive Banach space
UR - http://eudml.org/doc/251064
ER -

References

top
  1. Dale E. Alspach, Spiros A. Argyros, Complexity of weakly null sequences, Dissertationes Math. (Rozprawy Mat.) 321 (1992) Zbl0787.46009MR1191024
  2. D. Amir, J. Lindenstrauss, The structure of weakly compact sets in Banach spaces, Ann. of Math. (2) 88 (1968), 35-46 Zbl0164.14903MR228983
  3. Spiros A. Argyros, Pandelis Dodos, Genericity and amalgamation of classes of Banach spaces, Adv. Math. 209 (2007), 666-748 Zbl1109.03047MR2296312
  4. Spiros A. Argyros, V. Felouzis, Interpolating hereditarily indecomposable Banach spaces, J. Amer. Math. Soc. 13 (2000), 243-294 (electronic) Zbl0956.46014MR1750954
  5. Spiros A. Argyros, Gilles Godefroy, Haskell P. Rosenthal, Descriptive set theory and Banach spaces, Handbook of the geometry of Banach spaces, Vol. 2 (2003), 1007-1069, North-Holland, Amsterdam Zbl1121.46008MR1999190
  6. Spiros A. Argyros, Richard G. Haydon, A hereditarily indecomposable -space that solves the scalar-plus-compact problem, Acta Math. 206 (2011), 1-54 Zbl1223.46007MR2784662
  7. Spiros A. Argyros, S. Mercourakis, A. Tsarpalias, Convex unconditionality and summability of weakly null sequences, Israel J. Math. 107 (1998), 157-193 Zbl0942.46007MR1658551
  8. Spiros A. Argyros, Stevo Todorcevic, Ramsey methods in analysis, (2005), Birkhäuser Verlag, Basel Zbl1092.46002MR2145246
  9. Spiros A. Argyros, Andreas Tolias, Methods in the theory of hereditarily indecomposable Banach spaces, Mem. Amer. Math. Soc. 170 (2004) Zbl1055.46004MR2053392
  10. W. J. Davis, T. Figiel, W. B. Johnson, A. Pełczyński, Factoring weakly compact operators, J. Functional Analysis 17 (1974), 311-327 Zbl0306.46020MR355536
  11. I. Gasparis, New examples of c 0 -saturated Banach spaces, Math. Ann. 344 (2009), 491-500 Zbl1176.46017MR2495780
  12. I. Gasparis, New examples of c 0 -saturated Banach spaces. II, J. Funct. Anal. 256 (2009), 3830-3840 Zbl1180.46007MR2514062
  13. W. T. Gowers, B. Maurey, The unconditional basic sequence problem, J. Amer. Math. Soc. 6 (1993), 851-874 Zbl0827.46008MR1201238
  14. A. Grothendieck, Critères de compacité dans les espaces fonctionnels généraux, Amer. J. Math. 74 (1952), 168-186 Zbl0046.11702MR47313
  15. Denny H. Leung, Some stability properties of c 0 -saturated spaces, Math. Proc. Cambridge Philos. Soc. 118 (1995), 287-301 Zbl0840.46010MR1341791
  16. J. Lindenstrauss, On non separable reflexive Banach spaces, Bull. Amer. Math. Soc. 72 (1966), 967-970 Zbl0156.36403MR205040
  17. J. Lindenstrauss, Some open problems in Banach space theory, Sémin. Choquet, 15e Année 1975/76, Initiation à l’Analyse, Exposé 18, 9 p. (1977) (1977) Zbl0363.46016
  18. J. Lopez-Abad, A. Manoussakis, A classification of Tsirelson type spaces, Canad. J. Math. 60 (2008), 1108-1148 Zbl1160.46008MR2442049
  19. Richard D. Neidinger, Factoring operators through hereditarily- l p spaces, Banach spaces (Columbia, Mo., 1984) 1166 (1985), 116-128, Springer, Berlin Zbl0587.47023MR827767
  20. Richard Dean Neidinger, Properties of Tauberian Operators on Banach Spaces (semi-embedding, factorization, functional), (1984), ProQuest LLC, Ann Arbor, MI MR2634045
  21. Haskell P. Rosenthal, A characterization of Banach spaces containing l 1 , Proc. Nat. Acad. Sci. U.S.A. 71 (1974), 2411-2413 Zbl0297.46013MR358307
  22. Andrew Sobczyk, Projection of the space ( m ) on its subspace ( c 0 ) , Bull. Amer. Math. Soc. 47 (1941), 938-947 Zbl0027.40801MR5777
  23. M. Zippin, Banach spaces with separable duals, Trans. Amer. Math. Soc. 310 (1988), 371-379 Zbl0706.46015MR965758

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.