The cofinal property of the reflexive indecomposable Banach spaces
Spiros A. Argyros[1]; Theocharis Raikoftsalis[1]
- [1] National Technical University of Athens Faculty of Applied Sciences Department of Mathematics Zografou Campus, 157 80, Athens (Greece)
Annales de l’institut Fourier (2012)
- Volume: 62, Issue: 1, page 1-45
- ISSN: 0373-0956
Access Full Article
topAbstract
topHow to cite
topArgyros, Spiros A., and Raikoftsalis, Theocharis. "The cofinal property of the reflexive indecomposable Banach spaces." Annales de l’institut Fourier 62.1 (2012): 1-45. <http://eudml.org/doc/251064>.
@article{Argyros2012,
abstract = {It is shown that every separable reflexive Banach space is a quotient of a reflexive hereditarily indecomposable space, which yields that every separable reflexive Banach is isomorphic to a subspace of a reflexive indecomposable space. Furthermore, every separable reflexive Banach space is a quotient of a reflexive complementably $\ell _p$-saturated space with $1<p<\infty $ and of a $c_0$ saturated space.},
affiliation = {National Technical University of Athens Faculty of Applied Sciences Department of Mathematics Zografou Campus, 157 80, Athens (Greece); National Technical University of Athens Faculty of Applied Sciences Department of Mathematics Zografou Campus, 157 80, Athens (Greece)},
author = {Argyros, Spiros A., Raikoftsalis, Theocharis},
journal = {Annales de l’institut Fourier},
keywords = {Banach space theory; $\ell _p$ saturated; indecomposable spaces; hereditarily indecomposable spaces; interpolation methods; saturated norms; saturated space; reflexive Banach space},
language = {eng},
number = {1},
pages = {1-45},
publisher = {Association des Annales de l’institut Fourier},
title = {The cofinal property of the reflexive indecomposable Banach spaces},
url = {http://eudml.org/doc/251064},
volume = {62},
year = {2012},
}
TY - JOUR
AU - Argyros, Spiros A.
AU - Raikoftsalis, Theocharis
TI - The cofinal property of the reflexive indecomposable Banach spaces
JO - Annales de l’institut Fourier
PY - 2012
PB - Association des Annales de l’institut Fourier
VL - 62
IS - 1
SP - 1
EP - 45
AB - It is shown that every separable reflexive Banach space is a quotient of a reflexive hereditarily indecomposable space, which yields that every separable reflexive Banach is isomorphic to a subspace of a reflexive indecomposable space. Furthermore, every separable reflexive Banach space is a quotient of a reflexive complementably $\ell _p$-saturated space with $1<p<\infty $ and of a $c_0$ saturated space.
LA - eng
KW - Banach space theory; $\ell _p$ saturated; indecomposable spaces; hereditarily indecomposable spaces; interpolation methods; saturated norms; saturated space; reflexive Banach space
UR - http://eudml.org/doc/251064
ER -
References
top- Dale E. Alspach, Spiros A. Argyros, Complexity of weakly null sequences, Dissertationes Math. (Rozprawy Mat.) 321 (1992) Zbl0787.46009MR1191024
- D. Amir, J. Lindenstrauss, The structure of weakly compact sets in Banach spaces, Ann. of Math. (2) 88 (1968), 35-46 Zbl0164.14903MR228983
- Spiros A. Argyros, Pandelis Dodos, Genericity and amalgamation of classes of Banach spaces, Adv. Math. 209 (2007), 666-748 Zbl1109.03047MR2296312
- Spiros A. Argyros, V. Felouzis, Interpolating hereditarily indecomposable Banach spaces, J. Amer. Math. Soc. 13 (2000), 243-294 (electronic) Zbl0956.46014MR1750954
- Spiros A. Argyros, Gilles Godefroy, Haskell P. Rosenthal, Descriptive set theory and Banach spaces, Handbook of the geometry of Banach spaces, Vol. 2 (2003), 1007-1069, North-Holland, Amsterdam Zbl1121.46008MR1999190
- Spiros A. Argyros, Richard G. Haydon, A hereditarily indecomposable -space that solves the scalar-plus-compact problem, Acta Math. 206 (2011), 1-54 Zbl1223.46007MR2784662
- Spiros A. Argyros, S. Mercourakis, A. Tsarpalias, Convex unconditionality and summability of weakly null sequences, Israel J. Math. 107 (1998), 157-193 Zbl0942.46007MR1658551
- Spiros A. Argyros, Stevo Todorcevic, Ramsey methods in analysis, (2005), Birkhäuser Verlag, Basel Zbl1092.46002MR2145246
- Spiros A. Argyros, Andreas Tolias, Methods in the theory of hereditarily indecomposable Banach spaces, Mem. Amer. Math. Soc. 170 (2004) Zbl1055.46004MR2053392
- W. J. Davis, T. Figiel, W. B. Johnson, A. Pełczyński, Factoring weakly compact operators, J. Functional Analysis 17 (1974), 311-327 Zbl0306.46020MR355536
- I. Gasparis, New examples of -saturated Banach spaces, Math. Ann. 344 (2009), 491-500 Zbl1176.46017MR2495780
- I. Gasparis, New examples of -saturated Banach spaces. II, J. Funct. Anal. 256 (2009), 3830-3840 Zbl1180.46007MR2514062
- W. T. Gowers, B. Maurey, The unconditional basic sequence problem, J. Amer. Math. Soc. 6 (1993), 851-874 Zbl0827.46008MR1201238
- A. Grothendieck, Critères de compacité dans les espaces fonctionnels généraux, Amer. J. Math. 74 (1952), 168-186 Zbl0046.11702MR47313
- Denny H. Leung, Some stability properties of -saturated spaces, Math. Proc. Cambridge Philos. Soc. 118 (1995), 287-301 Zbl0840.46010MR1341791
- J. Lindenstrauss, On non separable reflexive Banach spaces, Bull. Amer. Math. Soc. 72 (1966), 967-970 Zbl0156.36403MR205040
- J. Lindenstrauss, Some open problems in Banach space theory, Sémin. Choquet, 15e Année 1975/76, Initiation à l’Analyse, Exposé 18, 9 p. (1977) (1977) Zbl0363.46016
- J. Lopez-Abad, A. Manoussakis, A classification of Tsirelson type spaces, Canad. J. Math. 60 (2008), 1108-1148 Zbl1160.46008MR2442049
- Richard D. Neidinger, Factoring operators through hereditarily- spaces, Banach spaces (Columbia, Mo., 1984) 1166 (1985), 116-128, Springer, Berlin Zbl0587.47023MR827767
- Richard Dean Neidinger, Properties of Tauberian Operators on Banach Spaces (semi-embedding, factorization, functional), (1984), ProQuest LLC, Ann Arbor, MI MR2634045
- Haskell P. Rosenthal, A characterization of Banach spaces containing , Proc. Nat. Acad. Sci. U.S.A. 71 (1974), 2411-2413 Zbl0297.46013MR358307
- Andrew Sobczyk, Projection of the space on its subspace , Bull. Amer. Math. Soc. 47 (1941), 938-947 Zbl0027.40801MR5777
- M. Zippin, Banach spaces with separable duals, Trans. Amer. Math. Soc. 310 (1988), 371-379 Zbl0706.46015MR965758
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.