Que sont les facteurs directs des espaces de Banach classiques ?

Marc Rogalski

Séminaire Choquet. Initiation à l'analyse (1977)

  • Volume: 17, Issue: 1, page 1-40

How to cite

top

Rogalski, Marc. "Que sont les facteurs directs des espaces de Banach classiques ?." Séminaire Choquet. Initiation à l'analyse 17.1 (1977): 1-40. <http://eudml.org/doc/110564>.

@article{Rogalski1977,
author = {Rogalski, Marc},
journal = {Séminaire Choquet. Initiation à l'analyse},
keywords = {complemented subspaces; Hilbert spaces; Wcg spaces; space of compact operators; bases; approximation property; structure; primary spaces},
language = {fre},
number = {1},
pages = {1-40},
publisher = {Secrétariat mathématique},
title = {Que sont les facteurs directs des espaces de Banach classiques ?},
url = {http://eudml.org/doc/110564},
volume = {17},
year = {1977},
}

TY - JOUR
AU - Rogalski, Marc
TI - Que sont les facteurs directs des espaces de Banach classiques ?
JO - Séminaire Choquet. Initiation à l'analyse
PY - 1977
PB - Secrétariat mathématique
VL - 17
IS - 1
SP - 1
EP - 40
LA - fre
KW - complemented subspaces; Hilbert spaces; Wcg spaces; space of compact operators; bases; approximation property; structure; primary spaces
UR - http://eudml.org/doc/110564
ER -

References

top
  1. [1] Altshuler ( Z.), Casazza ( P.G.) and Lin ( B.L.). - On symmetric basic sequences in Lorentz sequence spaces. - Israel J. Math., t. 15, 1973, p. 140-155. Zbl0264.46011MR328553
  2. [2] Alspach ( D.E.). - Quotients of C([0 , 1]) with separable dual, Bull. Amer. math. Soc., t. 83, 1977, p. 1057-1059. Zbl0371.46009MR626370
  3. [3] Alspach ( D.E.) and Benyamini ( Y.). - Primariness of spaces of continuous fonctions on ordinals. - Israel J. Math., t. 27, 1977, p. 64-92. Zbl0362.46021MR440349
  4. [4] Alspach ( D.E.), Enflo ( P.) and Odell ( E.). - On the structure of separable Lp spaces (1 &lt; p &lt; ∞) , Studia Math., Warszawa, t. 60, 1977, p. 79-90. Zbl0343.46017
  5. [5] Amir ( D.). - Projections onto continuous function spaces, Proc. Amer. math. Soc., t. 15, 1964, p. 396-402. Zbl0195.12604MR165350
  6. [6] Amir ( D.). - On isomorphisms of continuous function spaces, Israel J. Math., t. 3, 1965, p. 205-210. Zbl0141.31301MR200708
  7. [7] Amir ( D.) and Arbel ( D.). - On injections and surjections of continuous function spaces, Israel J. Math., t. 15, 1973, p. 301-310. Zbl0268.46028MR397380
  8. [8] Amir ( D.) and Lindenstrauss ( J.). - The structure of weakly compact sets in Banach spaces, Annals of Math., Series 2, t. 88, 1968, p. 35-46. Zbl0164.14903MR228983
  9. [9] Arterburn ( D.) and Whitley ( R.). - Projections in the space of bounded linear operators, Pacific J. of Math., t. 15, 1965, p. 739-746. Zbl0138.38602MR187052
  10. [10] Banach ( S.). - Théorie des opérations linéaires. - Warszawa, Subwencji Funduszu Kultury Narodowej, 1932. (Monografje Matematyczne, 1). Zbl0005.20901JFM58.0420.01
  11. [11] Benyamini ( Y.). - An extension theorem for separable Banach spaces (à paraître). Zbl0367.46014
  12. [12] Benyamini ( Y.) and Lindenstrauss ( J.). - A predual of l1 which is not isomorphic to a C(K) space, Israel J. Math., t. 13, 1972, p. 246-254. Zbl0253.46044MR331013
  13. [13] Bennet ( G.), Dor ( L.E.), Goodman ( V.), ... - On uncomplemented subspaces of Lp, 1 &lt; p &lt; 2 , Israel J. Math., t. 26, 1977, p. 178-187. Zbl0339.46022MR435822
  14. [14] Bessaga ( C.) and Pelczynski ( A.). - On bases and unconditional convergence of series in Banach spaces, Studia Math., Warszawa, t. 7, 1958, p. 151-164. Zbl0084.09805MR115069
  15. [15] Bessaga ( C.) and Pelczynski ( A.). - Spaces of continuous functions. IV : On isomorphical classification of spaces of continuous functions, Studia Math., Warszawa, t. 19, 1960, p. 53-62. Zbl0094.30303MR113132
  16. [16] Billard ( P.). - Bases dans H et bases de sous-espaces de dimension finie dans A, "Linear operators and approximation. Proceedings of the Conference held at the Oberwolfach mathematical Research Institute, 1971", p. 310-324. - Basel, Birkhäuser Verlag, 1972 (International Series of numerical Mathematics, 20). Zbl0261.46019MR428013
  17. [17] Billard ( P.). - Sur la primarité des espaces C([1 , α]) , C. R. Acad. Sc. Paris, t. 28, 1975, Série A, p. 629-631. Zbl0327.46038
  18. [18] Borsuk ( K.). - Über Isomorphie des Funktionalräume, Bull. intern. Acad. polon. Sc. et Lettres, Série A, 1933, p. 1-10. Zbl0007.25201JFM59.0407.03
  19. [19] Bočkarev ( S.V.). - Existence of a basis in the space of functions analytic in the disk, and some properties of Franklin' s system, Math. of the USSR-Sbornik, t. 24, 1974, p. 1-16 ; [en russe] Mat. Sbornik, t. 95, 1974, p. 3-18. Zbl0343.46016MR355562
  20. [20] Bretagnolle ( J.), Dacumba-Castelle ( D.) et Krivine ( J.-L.). - Lois stables et espaces Lp , Ann. Inst. Henri Poincaré, Section B, t. 2, 1966, p. 231-259. Zbl0139.33501
  21. [21] Cambern ( M.). - On isomorphisms with small bound, Proc. Amer. math. Soc. t. 18, 1967, p. 1062-1066. Zbl0165.47402MR217580
  22. [22] Capon ( M.). - Sous-espaces complémentés de Lp([0 , 1]) , Séminaire Choquet : Initiation à l'Analyse, 17e année, 1977/78, n° 16, 7 p. Zbl0393.46023
  23. [23] Cartwright ( D.I.). - Extensions of positive operators between Banach lattices, Memoirs of Amer. math. Soc., t. 164, 1975, p. 1-48. Zbl0314.47015MR383031
  24. [24] Casazza ( P.G.). - James' quasi-reflexive space is primary, Israel J. Math., t. 26, 1977, p. 294-305. Zbl0344.46045MR442650
  25. [25] Casazza ( P.G.), Kottman ( C.A.) and Lin ( B.L.). - On some classes of primary Banach spaces, Canad. J. of Math., t. 29, 1977, p. 856-873. Zbl0338.46017MR445278
  26. [26] Casazza ( P.G.) and Lin ( B.L.). - Projections on Banach spaces with symmetric bases, Studia Math., Warszawa, t. 52, 1974, p. 189-193. Zbl0266.46016MR350384
  27. [27] Cohen ( H.B.). - A bound-two isomorphism between C(X) Banach spaces, Proc. Amer. math. Soc., t. 50, 1975, p. 215-217. Zbl0317.46025MR380379
  28. [28] Dacumba-Castelle ( D.) et Krivine ( J.-L.). - Applications des ultraproduits à l'étude des espaces et des algèbres de Banach, Studia Math., Warszawa, t. 41, 1972, p. 315-334. Zbl0275.46023MR305035
  29. [29] Dacumba-Castelle ( D.) et Krivine ( J.-L.). - Sous-espaces de L1 , Israel J. Math., t. 26, 1977, p. 320-351. Zbl0344.46051MR626845
  30. [30] Davie ( A.M.). - The approximation problem for Banach spaces, Bull. London math. Soc., t. 5, 1973, p. 261-266. Zbl0267.46013MR338735
  31. [31] Davis ( W.J.). - Embedding spaces with unconditional basis, Israel J. Math., t. 20, 1975, p. 189-191. Zbl0311.46012MR454602
  32. [32] Day ( M.M.). - Normed linear spaces, 3rd edition. - Berlin, Springer-Verlag, 1973 (Ergebnisse der Mathematik, 21). Zbl0268.46013MR344849
  33. [33] Decoret ( B.). - Suites de décomposition d'un espace de Banach à base inconditionnelle. Noyaux d'opérateurs et isométrie définis sur certains espaces d'opérateurs, Thèse de troisième cycle, Lyon, 1978. Zbl0418.46008
  34. [34] Diestel ( J.). - Geometry of Banach spaces, Selected topics. - Berlin, Springer-Verlag, 1975 (Lecture Notes in Mathematics, 485). Zbl0307.46009MR461094
  35. [35] Ditor ( S.Z.). - On a lemma of Milutin concerning averaging operators in continuous function spaces, Trans. Amer. math. Soc., t. 149, 1970, p. 443- 452. Zbl0197.10301MR435921
  36. [36] Ditor ( S.Z.) and Haydon ( R.). - On absolute retracts, P(S) , and complemented subspaces of C(Dω1) , Studia Math., Warszawa, t. 56, 1976, p. 243-251. Zbl0352.46015
  37. [37] Dunford ( N.) and Pettis. ( B.J.). - Linear operations on summable functions, Trans. Amer. math. Soc. , t. 47, 1940, p. 323-392. Zbl0023.32902MR2020JFM66.0556.01
  38. [38] Dvoretzky ( A.). - Some results on convex bodies and Banach spaces, "Proceedings of the international symposium on linear spaces, Jerusalem, 1960", p. 123-160. - Jerusalem, Jerusalem Academic Press, 1961 (A publication of the israel Academy of Sciences and Humanities). Zbl0119.31803MR139079
  39. [39] Edelstein ( J.S.) and Wojtaszczyk ( P.). - On projections and unconditional bases in direct sums of Banach spaces, Studia Math., Warszawa, t. 56, 1976, p. 263-276. Zbl0362.46017MR425585
  40. [40] Enflo ( P.). - A counterexample to the approximation problem in Banach spaces, Acta Math., Uppsala, t. 130, 1973, p. 309-317. Zbl0267.46012MR402468
  41. [41] Fakhoury ( H.). - Projections contractantes dans C(X) , Séminaire Choquet : Initiation à l'Analyse, 10e année, 1970/71, Communication n° 5, 7 p. Zbl0224.46030MR477724
  42. [42] Fakhoury ( H.). - Etude du noyau d'un opérateur défini sur l'espace des suites bornées et applications, Bull. Sc. math., 2e série, t. 100, 1975, p. 45-55. Zbl0361.46014MR433196
  43. [43] Fakhoury ( H.). - Projections sur l'espace des opérateurs compacts, Séminaire Choquet : Initiation à l'Analyse, 15e année, 1975/76, n° 6 (non rédigé). 
  44. [44] Fakhoury ( H.). - Sur les espaces de Banach ne contenant pas l1 , Math. Scand. (à paraître). Zbl0369.46021
  45. [45] Figiel ( T.) and Johnson ( W.B.). - The approximation property does not imply the bounded approximation property, Proc. Amer. math. Soc., t. 41, 1973, p. 197-200. Zbl0289.46015MR341032
  46. [46] Garling ( D.J.H.). - On symmetric sequence spaces, Proc. London math. Soc., Series 3, t. 16, 1966, p. 85-106. Zbl0136.10701MR192311
  47. [47] Garling ( D.J.H.). - A class of reflexive symmetric BK-spaces, Canad. J. of Math., t. 21, 1969, p. 602-608. Zbl0175.41901MR410331
  48. [48] Goodner ( D.B.). - Projections in normed linear spaces, Trans. Amer. math. Soc., t. 69, 1950, p. 89-108. Zbl0041.23203MR37465
  49. [49] Grothendieck ( A.). - Sur les applications linéaires faiblement compactes d'espaces du type C(K) , Canad. J. of Math., t. 5, 1953, p. 129-173. Zbl0050.10902MR58866
  50. [50] Grothendieck ( A.). - Une caractérisation vectorielle-métrique des espaces L1, Canad. J. of Math., t. 7, 1955, p. 552-561. Zbl0065.34503MR76301
  51. [51] Gul'ko ( S.P.) and Os'kin ( A.V.). - Isomorphic classification of spaces of continuous functions on totally ordered bicompacta, Funct. Anal., t. 9, 1975, p. 56-57 ; [en russe] Funkcional. Anal. i Prilizen, t. 9, 1975, p. 61- 62. Zbl0325.46039MR377489
  52. [52] Hagler ( J.). - On the structure of S and C(S) for S dyadic, Trans. Amer. math. Soc., t. 214, 1975, p. 415-428. Zbl0321.46022MR388062
  53. [53] Hagler ( J.). - A counterexample to several questions about Banach spaces, Studia Math., Warszawa, t. 60, 1977, p. 289-308. Zbl0387.46015MR442651
  54. [54] Hagler ( J.) and Stegall ( C.). - Banach spaces whose duals contain complemented subspaces isomorphic to C[0, 1] , J. funct. Analysis, t. 13, 1973, p. 233-251. Zbl0265.46019MR350381
  55. [55] Haydon ( R.). - Injective Banach lattices, Math. Z., t. 156, 1977, p. 19-47. Zbl0345.46007MR473776
  56. [56] Haydon ( R.). - Sur les espaces de Banach injectifs qui sont des biduaux, Séminaire Choquet : Initiation à l'Analyse, 16e année, 1976/77, exposé n° 16, 2 p. Zbl0377.46059MR493273
  57. [57] Holsztynki ( W.). - Continuous mappings induced by isometries of spaces of continuous function, Studia Math., Warszawa, t. 26, 1966, p. 133-136. Zbl0156.36903MR193491
  58. [58] Isbell ( J.R.) and Semadeni ( Z.). - Projection constants and spaces of continuous functions, Trans. Amer. math. Soc., t. 107, 1963, p. 38-48. Zbl0116.08304MR146649
  59. [59] James ( R.C.). - A non-reflexive Banach space isometric with its second conjugate space, Proc. Nat. Acad. Sc. U. S. A., t. 37, 1951, p. 174-177. Zbl0042.36102MR44024
  60. [60] Johnson ( W.B. ) . - Factoring compact operators, Israel J. Math., t. 9, 1971, p. 337-345. Zbl0236.47045MR290133
  61. [61] Johnson ( W.B.). - A complementably universal cunjugate Banach space and its relation to the approximation problem, Israel J. Math., t. 13, 1972, p. 301- 310. Zbl0252.46024MR326356
  62. [62] Johnson ( W.B.), Rosenthal ( H.P.) and Zippin ( H.). - On bases, finite dimensional décompositions and weaker structures in Banach spaces, Israel J. Math., t. 9, 1971, p. 488-506. Zbl0217.16103MR280983
  63. [63] Johnson ( W.B.) and Szankowski ( A.). - Complementably universal Banach spacesStudia Math., Warszawa, t. 58, 1976, p. 91-97. Zbl0341.46017MR425582
  64. [64] Johnson ( W.B.) and Zippin ( M.). - Separable L1 preduals are quotients of C(Δ) , Israel J. Math., t. 16, 1973, p. 198-202. Zbl0283.46007
  65. [65] Jonac ( M.-L.) et Samuel ( C.). - Sur les sous-espaces complémentés de C(S) , Bull. Sc. math., 2e série, t. 94, 1970, p. 159-163. Zbl0201.44806MR271711
  66. [66] Kadec ( M.I.). - On complementably universal Banach spaces, Studia Math., Warszawa, t. 40, 1971, p. 85-89. Zbl0218.46015MR313764
  67. [67] Kadets ( M.I.) and Mityagin ( B.S.). - Complemented subspaces in Banach spaces, Russian math. Surveys, t. 28, 1973, fasc. 6, p. 77-95. Zbl0288.46017MR399807
  68. [68] Kakutani ( S.). - Some characterizations of Euclidean spaces, Japan J. of Math., t. 16, 1939, p. 93-97. Zbl0022.15001MR895
  69. [69] Kakutani ( S.). - Concrete representation of abstract (L)-spaces and the meanergodic theorem, Annals of Math., t. 42, 1941, p. 523-537. Zbl0027.11102MR4095JFM67.0419.01
  70. [70] Kelley ( J.L.). - Banach spaces with the extension property, Trans. Amer. math. Soc., t. 72, 1952, p. 323-326. Zbl0046.12002MR45940
  71. [71] Khintchine ( A.). - Über dyadische Brüche , Math. Z., t. 18, 1923, p. 109-116. Zbl49.0132.01MR1544623JFM49.0132.01
  72. [72] Kisljakov ( S.V.). - Classification of spaces of continuous functions on the ordinals, Siberian math. J., t. 16, 1975, p. 226-231 ; [en russe], Sibirsk. mat. Ž., t. 16, 1975, p. 293-300. Zbl0327.46033MR377490
  73. [73] Köthe ( G.). - Hebbare lokalekonvexe Räume, Math. Annalen, t. 165. 1966, p. 181-195. Zbl0141.11605MR196464
  74. [74] Krivine ( J.-L.). - Sous-espaces et cônes convexes dans les espaces Lp . Thèse Sc. math., Paris, 1967. 
  75. [75] Kuratowski ( C.). - Topologie. I, 4e édition. - Warszawa, Panstwowe Wydawnictwo Naukowe, 1958 (Polska Akademia Nauk. Monografie matematycznk, 28). Zbl0078.14603MR90795
  76. [76] Kwapien ( S.). - On Enflo's example of a Banach space without the approximation property, Séminaire Goulaouic-Schwartz : Equation aux dérivées partielles et analyse fonctionnelle, 1972/73, exposé n° 8, 9 p. Zbl0263.46018
  77. [77] Labbe ( M.A.). - Isomorphisms of continuous function spaces, Studia Math., Warszawa, t. 52, 1975, p. 221-231. Zbl0266.46021MR390737
  78. [78] Lacey ( E.H.). - The isometric theory of the classical Banach spaces. - Berlin, Springer-Verlag, 1974 (Grundlehren der mathematischen Wissenschaften, 208). Zbl0285.46024MR493279
  79. [79] Lazar ( A.I.) and Lindenstrauss ( J.). - Banach spaces whose duals are L1 spaces and their representing matrices, Acta Math., Uppsala, t. 126, 1971, p. 165-193. Zbl0209.43201MR291771
  80. [80] Lewis ( D.R.) and Stegall ( C.). - Banach spaces whose duals are isomorphic to l1(Γ) , J. funct. Analysis, t. 12, 1973, p. 177-187. Zbl0252.46021
  81. [81] Lindenstrauss ( J.). - Extension of compact operators. - Providence, American mathematical Society, 1964 (Memoirs of the American mathematical Society, 48). Zbl0141.12001MR179580
  82. [82] Lindenstrauss ( J.). - On complemented subspaces of m , Israel J. Math., t. 5, 1967, p. 153-156. Zbl0153.44202MR222616
  83. [83] Lindenstrauss ( J.). - A remark on L1-spaces, Israel J. Math., t. 8, 1970, p. 80-82. Zbl0197.38703MR259582
  84. [84] Lindenstrauss ( J.). - À remark on symmetric bases, Israel J. Math., t. 13, 1972, p. 317-320. Zbl0252.46027MR331024
  85. [85] Lindenstrauss ( J.). - Weakly compact sets - Their topological properties and the Banach spaces they generate, "Symposium on infinite dimensional topology, Baton Rouge, 1967", p. 235-274. - Princeton, Princeton University Press, 1972 (Annals of Mathematics Studies, 69). Zbl0232.46019MR417761
  86. [86] Lindenstrauss ( J.) and Pelczynski ( A.). - Absolutely summing operators in Lp-spaces and their applications, Studia Math., Warszawa, t. 29, 1968, p. 275-326. Zbl0183.40501MR231188
  87. [87] Lindenstrauss ( J.) and Pelczynski ( A.). - Contribution to the theory of the classical Banach spaces, J. funct. Analysis, t. 8, 1971, p. 225-249. Zbl0224.46041MR291772
  88. [88] Lindenstrauss ( J.) and Rosenthal ( H.P.). - The Lp-spaces, Israel J. Math., t. 7, 1969, p. 325-349. Zbl0205.12602MR270119
  89. [89] Lindenstrauss ( J.) and Tzafriri ( L.). - On the complemented subspaces problem, Israel J. Math., t. 9, 1971, p. 263-269. Zbl0211.16301MR276734
  90. [90] Lindenstrauss ( J.) and Tzafriri ( L.). - On Orlicz sequence spaces, Israel J. Math., t. 10, 1971, p. 379-390. Zbl0227.46042MR313780
  91. [91] Lindenstrauss ( J.) and Tzafriri ( L.). - On Orlicz sequence spaces, II, Israel J. Math., t. 11, 1972, p. 355-379. Zbl0237.46034MR310592
  92. [92] Lindenstrauss ( J.) and Tzafriri ( L.). - On Orlicz sequence spaces, III, Israel J. Math., t. 14, 1973, p. 368-389. Zbl0262.46031MR322476
  93. [93] Lindenstrauss ( J.) and Tzafriri ( L.). - The uniform approximation property on Orlicz spaces, Israel J. Math., t. 23, 1976, p. 142-155. Zbl0347.46025MR399806
  94. [94] Lindenstrauss ( J.) and Tzafriri ( L.). - Classical Banach spaces. - Berlin, Springer-Verlag, 1973 (Lecture Notes in Mathematics, 338). Zbl0259.46011MR415253
  95. [95] Lindenstrauss ( J.) and Wulbert ( D.E.). - On the classification of the Banach spaces whose duals are L1-spaces, J. funct. Analysis, t. 4, 1969, p. 332- 349. Zbl0184.15102MR250033
  96. [96] Lorentz ( G.G.). - Some new functional spaces, Annals of Math., 2nd Series, t. 51, 1950, p. 37-55. Zbl0035.35602MR33449
  97. [97] Lotz ( H.P.). - Extensions and liftings of positive linear mappings on Banach lattices, Trans. Amer. math. Soc., t. 211, 1975, p. 85-100. Zbl0351.47005MR383141
  98. [98] Maharam ( D.). - On homogeneous measure algebras, Proc. Nat. Acad. Sc. U. S. A., t. 28, 1942, p. 108-111. Zbl0063.03723MR6595
  99. [99] Marcinkiewicz ( J.). - Quelques théorèmes sur les séries orthogonales lacunaires, Ann. Soc. polon. Math., t. 17, 1938, p. 51-56. Zbl0019.40505
  100. [100] Mazurkiewicz ( S.) et Sierpinski ( W.). - Contribution à la topologie des ensembles dénombrables, Fund. Math., Warszawa, t. 1, 1920, p. 17-27. Zbl47.0176.01JFM47.0176.01
  101. [101] Michael ( E.). - Continuous selections, I, Annals of Math., Series 2, t. 63, 1956, p. 361-382. Zbl0071.15902MR77107
  102. [102] Milutin. - Isomorphisms of spaces of continuous functions..., [en russe], Teor. Funkc., Kharkov, t. 2, 1966, p. 150-156. 
  103. [103] Nachbin ( L.). - A theorem of the Hahn-Banach type for linear transformations, Trans. Amer. math. Soc., t. 68, 1950, p. 28-46. Zbl0035.35402MR32932
  104. [104] Orlicz ( M.W.). - Über eine gewisse Klasse von Räumen vom Typus B , Bull. intern. Acad. polon. Sc., Série A, 1932, p. 207-220. Zbl0006.31503JFM58.0422.02
  105. [105] Paley ( R.E.A.C.). - A remarkable series of orthogonal functions, I, Proc. London math. Soc., Series 2, t. 34, 1932, p. 241-264. Zbl0005.24806JFM58.0284.03
  106. [106] Pelczynski ( A.). - On the isomorphism of the spaces m and M , Bull. Acad. polon. Sc., Série 3, t. 6, 1958, p. 695-696. Zbl0085.09406MR102727
  107. [107] Pelczynski ( A.). - Projection in certain Banach spaces, Studia Math., Warszawa, t. 19, 1960, p. 209-228. Zbl0104.08503MR126145
  108. [108] Pelczynski ( A.). - Banach spaces on which every unconditionaly converging operator is weakly compact, Bull. Acad. polon. Sc., Série 3, t. 10, 1962, p. 641-648. Zbl0107.32504MR149295
  109. [109] Pelczynski ( A.). - On strictly singular and strictly cosingular operators. I : Strictly singular and strictly cosingular operators in C(S)-spaces, Bull. Acad. polon. Sc., Série 3, t. 13, 1965, p. 31-36. Zbl0138.38604MR177300
  110. [110] Pblczynski ( A.). - Linear extensions, linear averagings and their applications to linear topological classification of spaces of continuous functions, Rozpraw Mat., t. 58, 1968, 92 p. Zbl0165.14603MR227751
  111. [111] Pelczynski ( A.). - On Banach spaces containing L1(μ) , Studia Math., Warszawa, t. 30, 1968, p. 231-246. Zbl0159.18102
  112. [112] Pelczynski ( A.). - On C(S)-subspaces of separable Banach spaces, Studia Math., Warszawa, t. 31, 1968, p. 513-522. Zbl0169.15402MR234261
  113. [113] Pelczynski ( A.). - Universal bases, Studia Math., Warszawa, t. 32, 1969, p. 247-268. Zbl0185.37401MR241954
  114. [114] Pelczynski ( A.). - Any separable Banach space with the bounded approximation property is a complemented space of a Banach space with a basis, Studia Math., Warszawa, t. 40, 1971, p. 239-243. Zbl0223.46019MR308753
  115. [115] Pelczynski ( A.). - Banach spaces of analytics functions and absolutely summing operators. - Providence, American mathematical Society, 1977 (CBMS Regional Conference, Series in Mathematics, 30). Zbl0384.46015MR511811
  116. [116] Pelczynski ( A.) and Wojtaszczk ( P.). - Banach spaces with finite dimensional expansions of identity and universal bases of finite dimensional subspaces, Studia Math., Warszawa, t. 40, 1971, p. 91-108. Zbl0221.46014MR313765
  117. [117] Pitt ( H.R.). - A note on bilinear forms, J. London math. Soc., t. 11, 1936, p. 174-180. Zbl0014.31201JFM62.0209.01
  118. [118] Rosenthal ( H.P.). - Projections onto translation-invariant subspaces of Lp(G) . - Providence, American mathematical Society, 1966 (Memoirs of the American mathematical Society, 63). Zbl0203.43903MR211198
  119. [119] Rosenthal ( H.P.). - On totally incomparable Banach spaces, J. funct. Analysis, t. 4, 1962, p. 167-175. Zbl0184.15004MR248506
  120. [120] Rosenthal ( H.P.). - On the subspaces of Lp (p &gt; 2) spanned by sequences of independent random variables, Israel J. Math., t. 8, 1970, p. 273-303. Zbl0213.19303MR271721
  121. [121] Rosenthal ( H.P.). - On relatively disjoint families of measures with some applications to Banach space theory, Studia Math., Warszawa, t. 37, 1970, p. 13-36. Zbl0227.46027MR270122
  122. [122] Rosenthal ( H.P.). - On injective Banach spaces and the spaces L∞(μ) for finite measures μ , Acta Math., Uppsala, t. 124, 1970, P. 205-248. Zbl0207.42803
  123. [123] Rosenthal ( H.P.). - On factors of C([0 , 1]) with non separable dual, Israel J. Math., t. 3, 1972, p. 361-378. Zbl0253.46048MR388063
  124. [124] Rosenthal ( H.P.). - A characterization of Banach spaces containing l1 , Proc. Nat. Acad. Sc. U. S. A., t. 71, 1974, p. 2411-2413. Zbl0297.46013MR358307
  125. [125] Rosenthal ( H.P.). - The Banach spaces C(K) and Lp(μ) , Bull. Amer. math. Soc., t. 81, 1975, p. 763-781. Zbl0334.46033
  126. [126] Saint-Raymond ( J.). - Dérivation par rapport à une application. Existence d'éxaves markoviens, Séminaire Choquet : Initiation à l'Analyse, 13e année, 1973/74, Communication n° 2, 9 P. Zbl0352.46012
  127. [127] Samuel ( C.). - Sur certains espaces Cσ (S) et sur les sous-espaces complé- mentés de C(S) , Bull. Sc. math., Serie 2, t. 95, 1971, p. 65-82. Zbl0211.42603
  128. [128] Semadeni ( Z.). - Banach spaces non isomorphic to their cartesian squares, I, Bull. Acad. polon. Sc., 3e série, t. 8, 1960, p. 81-84. Zbl0091.27802MR115074
  129. [129] Simons ( S.). - Local reflexivity and (p , q)-summing maps, Math. Annalen, t. 198, 1972, p. 335-344. Zbl0231.46033MR326353
  130. [130] Sobczyk ( A.). - Projection of the space (m) on its subspace (C0) , Bull. Amer . math. Soc., t. 47, 1941, p. 938-947. Zbl0027.40801MR5777
  131. [131] Stegall ( C.). - Banach spaces whose duals contain l1(Γ) with applications to the study of dual L1(μ)-spaces, Trans. Amer. math. Soc., t. 176, 1973, p. 463-477. Zbl0259.46016
  132. [132] Stern ( J.). - Propriétés locales et ultrapuissances d'espaces de Banach, Séminaire Maurey-Schwartz : Espaces Lp , applications radonifiantes et géométrie des espaces de Banach, 1974/75, Exposés n° 7 et 8, 16 p. et 12 p. Zbl0318.46027
  133. [133] Stone ( M.H.). - Applications of the theory of Boolean rings to general topology, Trans. Amer. math. Soc., t. 41, 1937, p. 375-481. Zbl0017.13502MR1501905JFM63.1173.01
  134. [134] Szankowski ( A.). - Embedding Banach spaces with unconditional bases into spaces with symmetric bases, Israel J. Math., t. 15, 1973, p. 53-59. Zbl0265.46020MR425588
  135. [135] Szankowski ( A.). - Subspaces without approximation property (à paraître). Zbl0384.46008
  136. [136] Szankowski ( A.). - The space B(H) has not approximation property ( à paraître). 
  137. [137] Szlenk ( W.). - The non-existence of a separable reflexive Banach space universal for all separable reflexive Banach spaces, Studia Math., Warszawa, t. 30, 1968, p. 53-61. Zbl0169.15303MR227743
  138. [138] Talagrand ( M.). - Espaces de Banach K-analytiques (à paraître). 
  139. [139] Thorp ( E.O.). - Projections onto the subspaces of compact operators, Pac. J. Math., t. 10, 1960, p. 693-696. Zbl0119.31904MR114128
  140. [140] Tong ( A.E.) and Wilken ( D.R.). - The uncomplemented subspace K(E , F) , Studia Math., Warszawa, t. 37, 1971, p. 227-236. Zbl0212.46302MR300058
  141. [141] Veech ( W.A.). - Short proof of Soczyk's theorem, Proc. Amer. math. Soc. t. 28, 1971, p. 627-628. Zbl0213.39402MR275122
  142. [142] Wojtaszczyk ( P.). - On separable Banach spaces containing all separable reflexive Banach spaces, Studia Math., Warszawa, t. 37, 1970, p. 197-202. Zbl0212.14302MR308750
  143. [143] Wojtaszczyk ( P.). - On complemented subspaces and unconditional bases in lp + lq , Studia Math., Warszawa, t. 47, 1973, p. 197-206. Zbl0267.46010MR338744
  144. [144] Wolfe ( J.E.). - Injective Banach spaces of type C(T) , Thèse, Berkeley, 1971. 
  145. [145] Zippin ( M.). - On some subspaces of Banach whose duals are L1-spaces, Proc. Amer. math. Soc., t. 23, 1969, p. 378-385. Zbl0184.15101MR246094
  146. [146] Zippin ( M.). - The separable extension problem, Israel J. Math., t. 26, 1977, p. 372-387. Zbl0347.46076MR442649
  147. [147] Zygmund ( A.). - Trigonometric series, 2nd edition. - Cambridge, University Press, 1959. Zbl0085.05601MR107776

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.