Prescription de la forme volume
Dong Ye[1]
- [1] Département de Mathématiques, site Saint-Martin, Université de Cergy-Pontoise, BP 222, 95302 Cergy-Pontoise Cedex, France
Séminaire Équations aux dérivées partielles (2002-2003)
- Volume: 2002-2003, page 1-8
Access Full Article
topHow to cite
topYe, Dong. "Prescription de la forme volume." Séminaire Équations aux dérivées partielles 2002-2003 (2002-2003): 1-8. <http://eudml.org/doc/11057>.
@article{Ye2002-2003,
affiliation = {Département de Mathématiques, site Saint-Martin, Université de Cergy-Pontoise, BP 222, 95302 Cergy-Pontoise Cedex, France},
author = {Ye, Dong},
journal = {Séminaire Équations aux dérivées partielles},
keywords = {Moser's method; open problems},
language = {fre},
pages = {1-8},
publisher = {Centre de mathématiques Laurent Schwartz, École polytechnique},
title = {Prescription de la forme volume},
url = {http://eudml.org/doc/11057},
volume = {2002-2003},
year = {2002-2003},
}
TY - JOUR
AU - Ye, Dong
TI - Prescription de la forme volume
JO - Séminaire Équations aux dérivées partielles
PY - 2002-2003
PB - Centre de mathématiques Laurent Schwartz, École polytechnique
VL - 2002-2003
SP - 1
EP - 8
LA - fre
KW - Moser's method; open problems
UR - http://eudml.org/doc/11057
ER -
References
top- Ambrosio L., Optimal transport maps in Monge-Kantorovich problem, Proceedings of the ICM (Beijing 2002), III, 131–140, Higher Ed. Press, Beijing, (2002). Zbl1005.49030MR1957525
- Avinyó A., Solà-Morales J. et Valèncis M., On maps with given jacobians involving the heat equation, prépublication (2000). Zbl1063.35056
- Bourgain, J. et Brezis H., On the equation div and application to control of phases, J. Amer. Math. Soc. 16(2), 393–426 (2003). Zbl1075.35006MR1949165
- Burago D. et Kleiner B., Separated nets in Euclidean space and Jacobians of bi-Lipschitz maps, Geom. Funct. Anal. 8, 273-282 (1998). Zbl0902.26004MR1616135
- Dacorogna B., Direct methods in the calculus of variations, Springer-Verlag, Berlin, (1989). Zbl0703.49001MR990890
- Dacorogna B. et Moser J., On a partial differential equation involving the Jacobian determinant, Ann. I.H.P. Analyse Nonlinéaire 7, 1-26 (1990). Zbl0707.35041MR1046081
- McMullen C.T., Lipschitz maps and nets in Euclidean space, Geom. Funct. Anal. 8, 304-314 (1998). Zbl0941.37030MR1616159
- Moser J., On the volume elements on a manifold, Trans. Amer. Math. Soc. 120, 286-294 (1965). Zbl0141.19407MR182927
- Müller S., Higher integrability of determinants and weak convergence in , J. Reine Angew Math. 412, 20-34 (1990). Zbl0713.49004MR1078998
- Oxtoby J. et Ulam S., Mesure-preserving homeomorphisms and metrical transitivity, Ann. Math. 42, 874-920 (1941). Zbl0063.06074MR5803
- Rivière T. et Ye D., Resolutions of the jacobian determinant equation, Nonlinear Diff. Equa. and Appl., 3, 323-369 (1996). Zbl0857.35025MR1404587
- Ye D., Prescribing the Jacobian determinant in Sobolev spaces, Ann. IHP Analyse Nonlinéaire, 3, 275-296 (1994). Zbl0834.35047MR1277896
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.