Prescription de la forme volume

Dong Ye[1]

  • [1] Département de Mathématiques, site Saint-Martin, Université de Cergy-Pontoise, BP 222, 95302 Cergy-Pontoise Cedex, France

Séminaire Équations aux dérivées partielles (2002-2003)

  • Volume: 2002-2003, page 1-8

How to cite

top

Ye, Dong. "Prescription de la forme volume." Séminaire Équations aux dérivées partielles 2002-2003 (2002-2003): 1-8. <http://eudml.org/doc/11057>.

@article{Ye2002-2003,
affiliation = {Département de Mathématiques, site Saint-Martin, Université de Cergy-Pontoise, BP 222, 95302 Cergy-Pontoise Cedex, France},
author = {Ye, Dong},
journal = {Séminaire Équations aux dérivées partielles},
keywords = {Moser's method; open problems},
language = {fre},
pages = {1-8},
publisher = {Centre de mathématiques Laurent Schwartz, École polytechnique},
title = {Prescription de la forme volume},
url = {http://eudml.org/doc/11057},
volume = {2002-2003},
year = {2002-2003},
}

TY - JOUR
AU - Ye, Dong
TI - Prescription de la forme volume
JO - Séminaire Équations aux dérivées partielles
PY - 2002-2003
PB - Centre de mathématiques Laurent Schwartz, École polytechnique
VL - 2002-2003
SP - 1
EP - 8
LA - fre
KW - Moser's method; open problems
UR - http://eudml.org/doc/11057
ER -

References

top
  1. Ambrosio L., Optimal transport maps in Monge-Kantorovich problem, Proceedings of the ICM (Beijing 2002), III, 131–140, Higher Ed. Press, Beijing, (2002). Zbl1005.49030MR1957525
  2. Avinyó A., Solà-Morales J. et Valèncis M., On maps with given jacobians involving the heat equation, prépublication (2000). Zbl1063.35056
  3. Bourgain, J. et Brezis H., On the equation div Y = f and application to control of phases, J. Amer. Math. Soc. 16(2), 393–426 (2003). Zbl1075.35006MR1949165
  4. Burago D. et Kleiner B., Separated nets in Euclidean space and Jacobians of bi-Lipschitz maps, Geom. Funct. Anal. 8, 273-282 (1998). Zbl0902.26004MR1616135
  5. Dacorogna B., Direct methods in the calculus of variations, Springer-Verlag, Berlin, (1989). Zbl0703.49001MR990890
  6. Dacorogna B. et Moser J., On a partial differential equation involving the Jacobian determinant, Ann. I.H.P. Analyse Nonlinéaire 7, 1-26 (1990). Zbl0707.35041MR1046081
  7. McMullen C.T., Lipschitz maps and nets in Euclidean space, Geom. Funct. Anal. 8, 304-314 (1998). Zbl0941.37030MR1616159
  8. Moser J., On the volume elements on a manifold, Trans. Amer. Math. Soc. 120, 286-294 (1965). Zbl0141.19407MR182927
  9. Müller S., Higher integrability of determinants and weak convergence in L 1 , J. Reine Angew Math. 412, 20-34 (1990). Zbl0713.49004MR1078998
  10. Oxtoby J. et Ulam S., Mesure-preserving homeomorphisms and metrical transitivity, Ann. Math. 42, 874-920 (1941). Zbl0063.06074MR5803
  11. Rivière T. et Ye D., Resolutions of the jacobian determinant equation, Nonlinear Diff. Equa. and Appl., 3, 323-369 (1996). Zbl0857.35025MR1404587
  12. Ye D., Prescribing the Jacobian determinant in Sobolev spaces, Ann. IHP Analyse Nonlinéaire, 3, 275-296 (1994). Zbl0834.35047MR1277896

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.