Conditions suffisantes d’équirépartition modulo 1 . Problème de Waring-Goldbach pour f ( x ) = x c , c non entier

Philippe Toffin

Séminaire Delange-Pisot-Poitou. Théorie des nombres (1974-1975)

  • Volume: 16, Issue: 1, page 1-6

How to cite

top

Toffin, Philippe. "Conditions suffisantes d’équirépartition modulo $1$. Problème de Waring-Goldbach pour $f(x) = x^c$, $c$ non entier." Séminaire Delange-Pisot-Poitou. Théorie des nombres 16.1 (1974-1975): 1-6. <http://eudml.org/doc/110875>.

@article{Toffin1974-1975,
author = {Toffin, Philippe},
journal = {Séminaire Delange-Pisot-Poitou. Théorie des nombres},
language = {fre},
number = {1},
pages = {1-6},
publisher = {Secrétariat mathématique},
title = {Conditions suffisantes d’équirépartition modulo $1$. Problème de Waring-Goldbach pour $f(x) = x^c$, $c$ non entier},
url = {http://eudml.org/doc/110875},
volume = {16},
year = {1974-1975},
}

TY - JOUR
AU - Toffin, Philippe
TI - Conditions suffisantes d’équirépartition modulo $1$. Problème de Waring-Goldbach pour $f(x) = x^c$, $c$ non entier
JO - Séminaire Delange-Pisot-Poitou. Théorie des nombres
PY - 1974-1975
PB - Secrétariat mathématique
VL - 16
IS - 1
SP - 1
EP - 6
LA - fre
UR - http://eudml.org/doc/110875
ER -

References

top
  1. [1] Deshouillers ( J.-M.). - Problème de Waring avec exposants non entiers, Bull. Soc. math. France, t. 101, 1973, p. 285-295. Zbl0292.10038MR342477
  2. [2] Estermann ( T.). - Introduction to modern prime number theory. - Cambridge, at the University Press, 1952 (Cambridge Tracts in Mathematics and mathematical Physics, 41). Zbl0049.03103MR47692
  3. [3] Hardy ( G.H.) and Wright ( E.M.). - An introduction to the theory of numbers, New edition. - Oxford, at the Clarendon Press, 1968. Zbl0086.25803MR67125
  4. [4] Hua ( L.K.). - Additive theory of prime numbers. Translated from the Chinese. - Providence, American mathematical Society, 1965 (Translations of mathematical Monographs, 13). Zbl0192.39304MR194404
  5. [5] Kuipers ( L.) and Niederreiter ( H.). - Uniform distribution of sequences. - New York, London, Sydney [etc.], J. Wiley and Sons, 1974 (Pure and applied Mathematics, Wiley-Interscience). Zbl0281.10001MR419394
  6. [6] Rauzy ( G.). - Fonctions entières et répartition modulo 1 , II, Bull. Soc. math. France, t. 101, 1973, p. 185-192. Zbl0269.10029MR342483
  7. [7] Rhin ( G.). - Sur la répartition modulo 1 des suites f(p) , Acta Arithmetica, Warszawa, t. 23, 1973, p. 217-248. Zbl0264.10026MR323731
  8. [8] Titchmarsch ( E.C.). - The theory of the Riemann zeta function. - Oxford, at the Clarendon Press, 1951. Zbl0042.07901MR46485
  9. [9] Vinogradov ( I.M. ). - The method of trigonometrical sums in the theory of numbers. Translated from the Russian. - London, New York, Interscience Publishers, 1954. Zbl0055.27504

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.