Klein Paradox and Superradiance for the charged Klein-Gordon Field
- [1] Université Bordeaux-1, Institut de Mathématiques, UMR CNRS 5466, F-33405 Talence Cedex
Séminaire Équations aux dérivées partielles (2003-2004)
- Volume: 2003-2004, page 1-11
Access Full Article
topHow to cite
topBachelot, Alain. "Klein Paradox and Superradiance for the charged Klein-Gordon Field." Séminaire Équations aux dérivées partielles 2003-2004 (2003-2004): 1-11. <http://eudml.org/doc/11089>.
@article{Bachelot2003-2004,
affiliation = {Université Bordeaux-1, Institut de Mathématiques, UMR CNRS 5466, F-33405 Talence Cedex},
author = {Bachelot, Alain},
journal = {Séminaire Équations aux dérivées partielles},
language = {eng},
pages = {1-11},
publisher = {Centre de mathématiques Laurent Schwartz, École polytechnique},
title = {Klein Paradox and Superradiance for the charged Klein-Gordon Field},
url = {http://eudml.org/doc/11089},
volume = {2003-2004},
year = {2003-2004},
}
TY - JOUR
AU - Bachelot, Alain
TI - Klein Paradox and Superradiance for the charged Klein-Gordon Field
JO - Séminaire Équations aux dérivées partielles
PY - 2003-2004
PB - Centre de mathématiques Laurent Schwartz, École polytechnique
VL - 2003-2004
SP - 1
EP - 11
LA - eng
UR - http://eudml.org/doc/11089
ER -
References
top- A. Bachelot. Asymptotic completeness for the Klein-Gordon equation on the Schwarzschild metric. Ann. Inst. Henri Poincaré - Physique théorique, 61 (4) : 411–441, 1994. Zbl0809.35141MR1311537
- A. Bachelot. Global properties of the wave equation on non globally hyperbolic manifolds. J. Math. Pures Appl., 81 : 35-65, 2002. Zbl1078.58016MR1994882
- A. Bachelot. Superradiance and Scattering of the charged Klein-Gordon Field by a Steplike Electrostatic Potential. J. Math. Pures Appl., to appear, 2004. Zbl1063.81095
- E. Bairamov, Ö. Çakar, A. M. Krall. An Eigenfunction Expansion for a Quadratic Pencil of a Schrödinger Operator with Spectral Singularities. J. Diff. Eqs., 151 : 268–289, 1999. Zbl0945.34067MR1669566
- A. Cohen, T. Kappeler. Scattering and Inverse Scattering for Steplike Potentials in the Schrödinger Equation. Indiana Univ. Math. J., 34 (1) : 127–180, 1985. Zbl0553.34015MR773398
- E.B. Davies, B. Simon. Scattering Theory for Systems with Different Spatial Asymptotics on the Left and Right. Comm. Math. Phys., 63 : 277–301, 1978. Zbl0393.34015MR513906
- P. Deift, E. Trubowitz. Inverse Scattering on the Line. Comm. Pure Appl. Math., 32 : 121–251, 1979. Zbl0388.34005MR512420
- G. W. Gibbons. Vacuum Polarization and the Spontaneous Loss of Charge by Black Holes. Comm. Math. Phys., 44 : 245–264, 1975. MR381610
- D. Häfner. Complétude asymptotique pour l’équation des ondes dans une classe d’espaces-temps stationnaires et asymptotiquement plats. Ann. Inst. Fourier (Grenoble), 51 : 779–833, 2001. Zbl0981.35031
- D. Häfner. Sur la théorie de la diffusion pour l’équation de Klein-Gordon dans la métrique de Kerr. Dissertationnes Mathematicae, 421 : 102 pp., 2003. Zbl1075.35093
- F. Melnyk. Scattering on Reissner-Nordstrøm metric for massive charged spin 1/2 fields. Ann. Henri Poincaré, 4(5) : 813–846, 2003. Zbl1106.83015MR2016993
- F. Melnyk. The Hawking effect for spin 1/2 fields. Comm. Math. Phys., 244(3) : 483–525, 2004. Zbl1062.83040MR2034486
- J-P. Nicolas. A non linear Klein-Gordon equation on Kerr metrics. J. Math. Pures Appl., 81(9) : 885–203, 2002. Zbl1029.83029MR1940372
- J-P. Nicolas. Dirac fields on asymptotically flat space-time. Dissertationnes Mathematicae, 408, 85 pp., 2002. Zbl1011.83015MR1952742
- R. Ruffini. The Dyadosphere of black holes and gamma-ray bursts. Astron. Astrophys. Suppl. Ser., 138(3) : 513–514, 1999.
- S.N.M. Ruijsenaars, P.J.M. Bongaarts. Scattering theory for one-dimensional step potentials. Ann. Inst. Henri Poincaré, Sec. A, 26(1) : 1–17, 1977. Zbl0353.47004MR443712
- S.H. Tang, M. Zworski. Resonance expansions of scattered waves . Comm. Pure and Appl. Math., 53 : 1305–1334, 2000. Zbl1032.35148MR1768812
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.