Some applications of linear forms in logarithms

T. N. Shorey

Séminaire Delange-Pisot-Poitou. Théorie des nombres (1975-1976)

  • Volume: 17, Issue: 1, page 1-8

How to cite

top

Shorey, T. N.. "Some applications of linear forms in logarithms." Séminaire Delange-Pisot-Poitou. Théorie des nombres 17.1 (1975-1976): 1-8. <http://eudml.org/doc/110922>.

@article{Shorey1975-1976,
author = {Shorey, T. N.},
journal = {Séminaire Delange-Pisot-Poitou. Théorie des nombres},
language = {eng},
number = {1},
pages = {1-8},
publisher = {Secrétariat mathématique},
title = {Some applications of linear forms in logarithms},
url = {http://eudml.org/doc/110922},
volume = {17},
year = {1975-1976},
}

TY - JOUR
AU - Shorey, T. N.
TI - Some applications of linear forms in logarithms
JO - Séminaire Delange-Pisot-Poitou. Théorie des nombres
PY - 1975-1976
PB - Secrétariat mathématique
VL - 17
IS - 1
SP - 1
EP - 8
LA - eng
UR - http://eudml.org/doc/110922
ER -

References

top
  1. [1] Baker ( A.). - Linear forms in the logarithms of algebraic numbers, I, Mathematika, London, t. 13, 1966, p. 204-216. Zbl0161.05201MR258756
  2. [2] Baker ( A.). - Linear forms in the logarithms of algebraic numbers, IV, Mathematika, London, t. 15, 1968, p. 204-216. Zbl0169.37802MR258756
  3. [3] Birkhoff ( G.D.) and Vandiver ( H.S.). - On the integral divisors of an - bn, Annals of Math., Series 2, t. 5, 1904, p. 173-180. MR1503541JFM35.0205.01
  4. [4] Coates ( J.). - An effective p-adic analogue of a theorem of Thue, Acta Arithm., Warszawa, t. 15, 1969, p. 279-305. Zbl0221.10025MR242768
  5. [5] Erdös ( P.). - On the greatest prime factor of Πxk=1 f(k) , J. London math. Soc., t. 27, 1952, p. 379-384. Zbl0046.04102
  6. [6] Erdös ( P.). - Some recent advances and current problems in number theory, "Lectures on modern mathematics", Vol. III, p. 196-244. - New York, J. Wiley and Sons, 1965. Zbl0132.28402MR177933
  7. [7] Erdös ( P.) and Selfridge ( J.L.). - Some problems on the prime factors of consecutive integers, Illinois J. Math., t. 11, 1967, p. 428-430. Zbl0149.28901MR229570
  8. [8] Erdös ( P.) and Selfridge ( J.L.). - Some problems on the prime factors of consecutive integers, II., "Proceedings of the Washington State University conference on number theory", p. 13-21. - Pullman, Washington State University, 1971. Zbl0228.10028MR318076
  9. [9] Erdös ( P.) and Shorey ( T.N.). - On the greatest prime factor of 2p - 1 for a prime p and other expressions, Acta Arithm., t. 30, 1976, p. 257-265. Zbl0296.10021MR419381
  10. [10] Grimm ( C.A.). - A conjecture on consecutive composite numbers, Amer. math. Monthly, t. 76, 1969, p. 1126-1128. Zbl0197.32001MR260668
  11. [11] Jutila ( M.). - On numbers with a large prime factor, II., J. Indian math. Soc., t. 38, 1974, p. 125-130. Zbl0335.10045MR399013
  12. [12] Keates ( M.). - On the greatest prime factor of a polynomial, Proc. Edinburgh math. Soc., Series 2, t. 16, 1969, p. 301-308. Zbl0188.10201MR257034
  13. [13] Kotov ( S.V.). - Greatest prime factor of a polynomial, Math. Notes, t. 13, 1973, p. 313-317 ; and [in Russian] Mat. Zametki, t. 13, 1973, p. 515-522. Zbl0267.12002MR327670
  14. [14] Langevin ( M.). - Plus grand facteur premier d'entiers consécutifs, C. R. Acad. Sc. Paris, t. 280, 1975, Serie A, p. 1567-1570. Zbl0305.10041MR379403
  15. [15] Langevin ( M.). - Plus grand facteur premier d'entiers voisins, C. R. Acad. Sc. Paris, t. 281, 1975, Série A, p. 491-493. Zbl0311.10044MR396442
  16. [16] Mahler ( K.). - Ein Analogon zu einem Schneiderschen Satz, Koninkl. Nederl. Akad. Wetensch., Proc., t. 39, 1936, p. 633-640 and p. 729-737. Zbl0014.20502JFM62.0186.01
  17. [17] Ramachandra ( K.). - Application of Baker's theory to two problems consired by Erdös and Selfridge, J. Indian math. Soc., t. 37, 1973, p. 25-34. Zbl0326.10038MR364121
  18. [18] Ramachandra ( K.) and Shorey ( T.N.). - On gaps between numbers with a large prime factor, Acta Arithm., Warszawa, t. 24, 1973, p. 99-111. Zbl0258.10022MR327684
  19. [19] Ramachandra ( K.), Shorey ( T.N.) and Tijdeman ( R.). - On Grimm's problem relating to factorisation of a block of consecutive integers, II., J. reine angew. Math. (to appear). Zbl0333.10028
  20. [20] Ridout ( D.). - Rational approximations to algebraic numbers, Mathematika, London, t. 4, 1957, p. 125-131. Zbl0079.27401MR93508
  21. [21] Schinzel ( A.). - On primitive prime factors of an - bn , Proc. Cambridge philos. Soc., t. 58, 1962, p. 555-562. Zbl0114.02605MR143728
  22. [22] Schinzel ( A.). - On two theorems of Gel'fond and some of their applications, Acta Arithm., Warszawa, t. 13, 1967, p. 177-236. Zbl0159.07101MR222034
  23. [23] Shorey ( T.N.). - On gaps between numbers with a large prime factor, II., Acta Arithm., Warszawa, t. 25, 1974, p. 365 - 373. Zbl0258.10023MR344201
  24. [24] Shorey ( T.N.). - On linear forms in the logarithms of algebraic numbers, Acta Arithm., Warszawa, t. 30, 1976, p. 37-42. Zbl0289.10023MR412117
  25. [25] Shorey ( T.N.) and Tijdeman ( R.). - On the greatest prime factor of polynomials at integer points (to appear). Zbl0338.10040MR424681
  26. [26] Siegel ( C.L.). - Approximation algebraischer Zahlen, Math. Z., t. 10, 1921, p. 173-213. MR1544471JFM48.0163.07
  27. [27] Sprindžuk ( V.G.). - The greatest prime factor of a binary form, Dokl. Akad. Nauk BSSR, t. 15, 1971, p. 389-391. MR286752
  28. [28] Stewart ( C.L.). - The greatest prime factor of an - bn , Acta Arithm., Warszawa, t. 26, 1975, p. 427-433. Zbl0313.10007MR398993
  29. [29] Tijdeman ( R.). - On integers with many small prime factors, Compositio Math., Groningen, t. 26, 1973, p. 319-330. Zbl0267.10056MR325549
  30. [30] Zsigmondy ( K.). - Zur Theorie der Potenzreste, Monatsh. fUr Math., t. 3, 1892, p. 265-289. JFM24.0176.02

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.