Structure galoisienne des anneaux d'entiers

Philippe Cassou-Noguès

Séminaire Delange-Pisot-Poitou. Théorie des nombres (1977-1978)

  • Volume: 19, Issue: 1, page 1-11

How to cite

top

Cassou-Noguès, Philippe. "Structure galoisienne des anneaux d'entiers." Séminaire Delange-Pisot-Poitou. Théorie des nombres 19.1 (1977-1978): 1-11. <http://eudml.org/doc/110988>.

@article{Cassou1977-1978,
author = {Cassou-Noguès, Philippe},
journal = {Séminaire Delange-Pisot-Poitou. Théorie des nombres},
keywords = {Galois module structure; algebraic integers; virtual character of Galois group},
language = {fre},
number = {1},
pages = {1-11},
publisher = {Secrétariat mathématique},
title = {Structure galoisienne des anneaux d'entiers},
url = {http://eudml.org/doc/110988},
volume = {19},
year = {1977-1978},
}

TY - JOUR
AU - Cassou-Noguès, Philippe
TI - Structure galoisienne des anneaux d'entiers
JO - Séminaire Delange-Pisot-Poitou. Théorie des nombres
PY - 1977-1978
PB - Secrétariat mathématique
VL - 19
IS - 1
SP - 1
EP - 11
LA - fre
KW - Galois module structure; algebraic integers; virtual character of Galois group
UR - http://eudml.org/doc/110988
ER -

References

top
  1. [1] Cassou-Noguès ( Ph.). - Structure galoisienne des anneaux d'entiers, Proc. London math. Soc. ( à paraître). Zbl0425.12008
  2. [2] Cassou-Noguès ( Ph.). - Quelques théorèmes de base normale d'entiers, Annales Inst. Fourier, Grenoble, 3e série t. 28, 1978. Zbl0368.12004MR511812
  3. [3] Cassou-Noguès ( Ph.). - Modules de Frobenius et structure des anneaux d'entiers (à paraître). 
  4. [4] Fröhlich ( A.). - Galois module structure, "Algebraic number fields ( L-functions and Galois properties) [1975, Durham], Symposium organised by the London mathematical Society", p. 133-191. - London, Academic Press, 1977. Zbl0375.12010MR447181
  5. [5] Fröhlich ( A.). - Arithmetic and Galois module structure for tame extensions, J. für die reine und angew. Math. t. 286-287, 1976, p. 380-440. Zbl0385.12004MR432595
  6. [6] Fröhlich ( A.). - A normal integral basis theorem, J. of Algebra, t. 39, 1976, p. 131-137. Zbl0345.12001MR401709
  7. [7] Fröhlich ( A.). - Module invariants and root numbers for quaternion fields of degree 4lr , Proc. Cambridge phil. Soc., t. 76, 1974, p. 393-399. Zbl0304.12008MR371860
  8. [8] Fröhlich ( A.). - Artin-root numbers and normal integral bases for quaternion fields, Invent. Math., Berlin, t. 17, 1972, p. 143-166. Zbl0261.12008MR323759
  9. [9] Fröhlich ( A.) Keating ( E.) and Wilson ( S.M.J.). - The class-group of quaternion and diehedral 2-groups, Mathematika, London, t. 21, 1974, p. 64-71. Zbl0303.12006MR360531
  10. [10] Jacobinski ( H.). - On extensions of lattices, Michigan math. J., t. 13, 1966, p. 471-475. Zbl0143.05702MR204538
  11. [11] Hilbert ( D.). - Die theorie des algebraischen Zahlkörper, Jahresbericht deutschen Math. Verein., t. 4, 1897, p. 175-525. JFM28.0157.05
  12. [12] Lam ( T.Y.). - Artin exponent of finite groups, J. of Algebra, t. 9, 1968, p. 94-119. Zbl0277.20006MR224705
  13. [13] Martinet ( J.). - Modules sur l'algèbre du groupe quaternionien, Annales scient. Ec. Norm. Sup., 4e série, t. 4, 1971, p. 399-408. Zbl0219.12012MR291208
  14. [14] Martinet ( J.). - Character theory and Artin L-functions, "Algebraic number fields ( L-functions and Galois properties) [1975, Durham], Symposium organised by the London mathematical Society", p. 1-87. - London, Academic Press, 1977. Zbl0359.12015MR447187
  15. [15] Taylor ( M.). - Galois module structure of integers of relative abelian extensions, J. für die reine und angew. Math. (à paraître). Zbl0384.12007
  16. [16] Taylor ( M.). - Adams operations, local root numbers and the galois module stru structure of rings of integers (à paraître). Zbl0424.12007
  17. [17] Ullom ( S.). - The exponent of class groups, J. of Algebra, t. 29, 1974, p. 124-132. Zbl0278.20016MR338144

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.