Quelques théorèmes de base normale d'entiers
Annales de l'institut Fourier (1978)
- Volume: 28, Issue: 3, page 1-33
- ISSN: 0373-0956
Access Full Article
topAbstract
topHow to cite
topCassou-Noguès, Philippe. "Quelques théorèmes de base normale d'entiers." Annales de l'institut Fourier 28.3 (1978): 1-33. <http://eudml.org/doc/74370>.
@article{Cassou1978,
abstract = {On étudie l’ordre de l’élément défini dans le groupe des classes $C(\{\bf Z\}[\Gamma ])$ par l’anneau des entiers d’une extension galoisienne finie et modérément ramifiée $N$ d’un corps de nombres $K$, de groupe de Galois $\Gamma $. On démontre que cet ordre divise $[N:K]$ et que pour certains groupes $\Gamma $, métabéliens ou quaternioniens il est égal à 1 ou 2 suivant le signe des constantes de l’équation fonctionnelle des séries $L$-d’Artin associées aux caractères symplectiques de $\Gamma $. On en déduit de nouveaux exemples d’extensions $(N/\{\bf Q\})$ qui possèdent une base normale d’entiers.},
author = {Cassou-Noguès, Philippe},
journal = {Annales de l'institut Fourier},
language = {fre},
number = {3},
pages = {1-33},
publisher = {Association des Annales de l'Institut Fourier},
title = {Quelques théorèmes de base normale d'entiers},
url = {http://eudml.org/doc/74370},
volume = {28},
year = {1978},
}
TY - JOUR
AU - Cassou-Noguès, Philippe
TI - Quelques théorèmes de base normale d'entiers
JO - Annales de l'institut Fourier
PY - 1978
PB - Association des Annales de l'Institut Fourier
VL - 28
IS - 3
SP - 1
EP - 33
AB - On étudie l’ordre de l’élément défini dans le groupe des classes $C({\bf Z}[\Gamma ])$ par l’anneau des entiers d’une extension galoisienne finie et modérément ramifiée $N$ d’un corps de nombres $K$, de groupe de Galois $\Gamma $. On démontre que cet ordre divise $[N:K]$ et que pour certains groupes $\Gamma $, métabéliens ou quaternioniens il est égal à 1 ou 2 suivant le signe des constantes de l’équation fonctionnelle des séries $L$-d’Artin associées aux caractères symplectiques de $\Gamma $. On en déduit de nouveaux exemples d’extensions $(N/{\bf Q})$ qui possèdent une base normale d’entiers.
LA - fre
UR - http://eudml.org/doc/74370
ER -
References
top- [1] Ph. CASSOU-NOGUES, Classes d'idéaux de l'algèbre d'un groupe abélien et applications, Mémoire de la S.M.F., n° 37 (1974). Zbl0289.12014
- [2] Ph. CASSOU-NOGUES, Groupe des classes de l'algèbre d'un groupe métacyclique, J. of Algebra, 1 (1976). Zbl0346.12010
- [3] Ph. CASSOU-NOGUES, Structure galoisienne des anneaux d'entiers, à paraître in Proc. London Math. Soc. Zbl0425.12008
- [4] Ph. CASSOU-NOGUES, Quelques théorèmes de base normale, Journées Arithmétiques de Caen (1976), Astérisque, 41-42 (1977), 183-189. Zbl0356.12011
- [4a] Ph. CASSOU-NOGUES, Théorèmes de base normale, Séminaire de Théorie des Nombres, Bordeaux, exposé n° 27 (1976-1977) (à paraître). Zbl0356.12011
- [5] A. FRÖHLICH, Galois module structure, Durham symposium in Algebraic Number Fields, A. Fröhlich éd. Academic Press, (1977), 133-191. Zbl0375.12010MR56 #5496
- [6] A. FRÖHLICH, Arithmetic and Galois module structure, J. reine angew. Math., 286-287 (1976), 380-439. Zbl0385.12004MR55 #5582
- [7] A. FRÖHLICH, Galois module structure and Artin L-functions, Proc. int. congress of Mathematicians Vancouver (1974), 1 (1975), 351-356. Zbl0346.12006
- [8] A. FRÖHLICH, A normal integral basis theorem, J. of Algebra, vol. 39 (1976), n° 1. Zbl0345.12001MR53 #5536
- [9] A. FRÖHLICH, Module invariants and root numbers for quaternion fields of degree 4lr, Proc. Camb. Phil. Soc., 76 (1974), 393-399. Zbl0304.12008
- [10] A. FRÖHLICH, Artin root numbers, conductors and representations for generalised quaternion groups, Proc. London Math. Soc., 28 (1974). Zbl0321.12018
- [11] A. FRÖHLICH, E. KEATING, S.M.J. WILSON, The class-group of quaternion and dihedral 2-groups, Mathematika, vol 21 (1974), n° 41. Zbl0303.12006
- [12] J.M. FONTAINE, Sur la décomposition des algèbres de groupes, Ann. Sc. de l'E.N.S., 4e série, 4 (1971), 121-180. Zbl0215.10003MR47 #1925
- [13] S. GALOVICH, I. REINER, S. ULLOM, Class groups for integral representations of metacyclic groups, Mathematika, 19 (1972), 105-111. Zbl0248.12010MR48 #4087
- [14] J. GECHTER, Artin root numbers for real characters, Trans. Amer. Math. Soc., (1976), 35-38. Zbl0362.12008MR54 #5189
- [15] M. HALL, The theory of groups. The Macmillan Company, New-York (1959). Zbl0084.02202MR21 #1996
- [16] M. HARADA, Some criteria of hereditarity of crossed products, Osaka J. Math., 1 (1964), 69-80. Zbl0128.25901MR30 #4785
- [17] M. HARADA, Hereditary orders, Trans. Amer. Math. Soc., 107 (1963), 273-290. Zbl0113.26001MR27 #1474
- [18] D. HILBERT, Die theorie der algebraishen Zahlkörper, Jahresbericht D. Math. Ver., (1897). JFM28.0157.05
- [19] H. JACOBINSKI, On extensions of lattices, Michigan Math. J., 13 (1966), 471-475. Zbl0143.05702MR34 #4377
- [20] M.E. KEATING, Class group of metacyclic group of order prq, Mathematika, vol. 21 (1974), n° 41. Zbl0303.12005
- [21] J. MARTINET, Modules sur l'algèbre du groupe quaternionien, Ann. Sc. de l'E.N.S., 4e série, 4, (1971), 299-308. Zbl0219.12012MR45 #302
- [22] I. REINER, Maximal orders, Academic Press, London (1975). Zbl0305.16001MR52 #13910
- [23] D.S. RIM, Module over finite groups, Ann of Maths, vol. 69 (1959), 700-713. Zbl0092.26104MR21 #3474
- [24] J.P. SERRE, Corps locaux, 2e édition, Hermann, Paris (1968).
- [25] J.P. SERRE, Représentation linéaire des groupes finis, 2e édition, Hermann, (1971). Zbl0223.20003
- [26] J.P. SERRE, Modules projectifs et espaces fibrés à fibre vectorielle, Séminaire Dubreuil (1957-1958), p. 1-17. Zbl0132.41202
- [27] M. TAYLOR, Galois module structure of the ring of integers of l-extensions, Thesis of P.H.D., London (1977).
- [28] S. ULLOM, The exponent of class group, J. of Algebra, vol. 29 (1974), 124-132. Zbl0278.20016MR49 #2910
- [29] T. YAMADA, On the group algebras of metabelian groups over algebraic number fields I, Osaka J. Math., vol. 6 (1969), 211-228. Zbl0184.05102MR41 #8543
- [30] T. YAMADA, On the group algebras of metabelian groups over algebraic number fields II, J. Fac. Sci. Univ. Tokio, 16 (1969), 83-90. Zbl0188.06902MR41 #8544
- [31] T. YAMADA, On the group algebras of metacyclic groups over algebraic number fields, J. Fac. Sci. Univ. Tokio, 15 (1968), 179-199. Zbl0172.03403MR39 #7007
- [32] S.M.J. WILSON, Reduced norms in the K-theory of orders, Proc. London Math. Soc.. Zbl0358.16021
- [33] S. WILLIAMSON, Crossed products and hereditary orders, Nagoya Math., J., 23 (1963), 103-120. Zbl0152.02002MR29 #1242
- [34] C.W. CURTIS, I. REINER, Representation theory of finite groups and associative algebras, Interscience, New-York (1962). Zbl0131.25601MR26 #2519
Citations in EuDML Documents
topNotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.