Approximations simultanées de deux nombres réels

Eugène Dubois; Georges Rhin

Séminaire Delange-Pisot-Poitou. Théorie des nombres (1978-1979)

  • Volume: 20, Issue: 1, page 1-13

How to cite

top

Dubois, Eugène, and Rhin, Georges. "Approximations simultanées de deux nombres réels." Séminaire Delange-Pisot-Poitou. Théorie des nombres 20.1 (1978-1979): 1-13. <http://eudml.org/doc/111030>.

@article{Dubois1978-1979,
author = {Dubois, Eugène, Rhin, Georges},
journal = {Séminaire Delange-Pisot-Poitou. Théorie des nombres},
keywords = {best approximation of zero; cubic linear form},
language = {fre},
number = {1},
pages = {1-13},
publisher = {Secrétariat mathématique},
title = {Approximations simultanées de deux nombres réels},
url = {http://eudml.org/doc/111030},
volume = {20},
year = {1978-1979},
}

TY - JOUR
AU - Dubois, Eugène
AU - Rhin, Georges
TI - Approximations simultanées de deux nombres réels
JO - Séminaire Delange-Pisot-Poitou. Théorie des nombres
PY - 1978-1979
PB - Secrétariat mathématique
VL - 20
IS - 1
SP - 1
EP - 13
LA - fre
KW - best approximation of zero; cubic linear form
UR - http://eudml.org/doc/111030
ER -

References

top
  1. [1] Bernstein ( L.). - The Jacobin-Perron algorithme Its theory and applications. - Berlin, Springer-Verlag, 1971 (Lecture Notes in Mathematics, 207). Zbl0213.05201MR285478
  2. [2] Cassels ( J.W.S.). - An introduction to the geometry of numbers. - Berlin, Springer-Verlag, 1959 (Die Grundlehren der mathematischen Wissenschaften, 99). Zbl0086.26203MR157947
  3. [3] Cusik ( T.W.). - The Szekeres multidimensional continued fraction, Math. of comp., t. 31, 1977, p. 280-317. Zbl0349.10025MR429765
  4. [4] Dubois ( E.) et Paysant-Le Roux ( R.). - Algorithme de Jacobi-Perron dans les extensions cubiques, C. R. Acad. Sc. Paris, t. 280, 1975, Série A, p. 183-186. Zbl0297.12002MR360517
  5. [5] Minkowski ( H.). - Zur Theorie der Kettenbrücke, Ann. Ec. Norm. Sup., 3e série, t. 13, 1896, p. 41-60 ; Gesammelte Abhandlungen, vol. 1, p. 278-292. - Leipzig, Teubner, 1911. 
  6. [6] Perron ( O.). - Grundlägen für eine Theorie des j acobischen Kettenburchalgorithm, Math. Annalen, t. 64, 1907, p. 1-76. MR1511422JFM38.0262.01
  7. [7] Schmidt ( W.M.). - On simultaneous approximation of two algebraic numbers by rationals, Acta Math., Uppsala, t. 119, 1967, p. 27-50. Zbl0173.04801MR223309
  8. [8] Szekeres ( G.). - Multidimensional continued fractions, Ann. Univ. Se. Budapest Eötvos Sect. Math., t. 13, 1970, p. 113-140. Zbl0214.30101MR313198

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.