Étude qualitative de l’équation de Liouville en géométries courbes.

Delphine Salort[1]

  • [1] Laboratoire Jacques Louis Lions Université Pierre et Marie Curie 75252 Paris cedex 05

Séminaire Équations aux dérivées partielles (2005-2006)

  • page 1-14

How to cite

top

Salort, Delphine. "Étude qualitative de l’équation de Liouville en géométries courbes.." Séminaire Équations aux dérivées partielles (2005-2006): 1-14. <http://eudml.org/doc/11134>.

@article{Salort2005-2006,
affiliation = {Laboratoire Jacques Louis Lions Université Pierre et Marie Curie 75252 Paris cedex 05},
author = {Salort, Delphine},
journal = {Séminaire Équations aux dérivées partielles},
language = {eng},
pages = {1-14},
publisher = {Centre de mathématiques Laurent Schwartz, École polytechnique},
title = {Étude qualitative de l’équation de Liouville en géométries courbes.},
url = {http://eudml.org/doc/11134},
year = {2005-2006},
}

TY - JOUR
AU - Salort, Delphine
TI - Étude qualitative de l’équation de Liouville en géométries courbes.
JO - Séminaire Équations aux dérivées partielles
PY - 2005-2006
PB - Centre de mathématiques Laurent Schwartz, École polytechnique
SP - 1
EP - 14
LA - eng
UR - http://eudml.org/doc/11134
ER -

References

top
  1. Hajer Bahouri, Jean-Yves Chemin, Équations d’ondes quasilinéaires et estimations de Strichartz, Amer. J. Math. 121 (1999), 1337-1377 Zbl0952.35073
  2. C. Bardos, P. Degond, Global existence for the Vlasov-Poisson equation in 3 space variables with small initial data, Ann. Inst. H. Poincaré Anal. Non Linéaire 2 (1985), 101-118 Zbl0593.35076MR794002
  3. J. M Bouclet, N Tzvetkov, Strichartz estimates for long range perturbation, Preprint Zbl1168.35005
  4. Nicolas Burq, Estimations de Strichartz pour des perturbations à longue portée de l’opérateur de Schrödinger, Séminaire E.D.P de l’Ecole polytechnique (2001-2002) 
  5. N. Burq, P. Gérard, N. Tzvetkov, Strichartz inequalities and the nonlinear Schrödinger equation on compact manifolds, Amer. J. Math. 126 (2004), 569-605 Zbl1067.58027MR2058384
  6. François Castella, Benoît Perthame, Estimations de Strichartz pour les équations de transport cinétique, C. R. Acad. Sci. Paris Sér. I Math. 322 (1996), 535-540 Zbl0848.35095MR1383431
  7. Michael Christ, Alexander Kiselev, Maximal functions associated to filtrations, J. Funct. Anal. 179 (2001), 409-425 Zbl0974.47025MR1809116
  8. I. Gasser, P.-E. Jabin, B. Perthame, Regularity and propagation of moments in some nonlinear Vlasov systems, Proc. Roy. Soc. Edinburgh Sect. A 130 (2000), 1259-1273 Zbl0984.35102MR1809103
  9. François Golse, Laure Saint-Raymond, Velocity averaging in L 1 for the transport equation, C. R. Math. Acad. Sci. Paris 334 (2002), 557-562 Zbl1154.35326MR1903763
  10. Andrew Hassell, Terence Tao, Jared Wunsch, A Strichartz inequality for the Schrödinger equation on nontrapping asymptotically conic manifolds, Comm. Partial Differential Equations 30 (2005), 157-205 Zbl1068.35119MR2131050
  11. P.-L. Lions, B. Perthame, Propagation of moments and regularity for the 3 -dimensional Vlasov-Poisson system, Invent. Math. 105 (1991), 415-430 Zbl0741.35061MR1115549
  12. Pierre-Louis Lions, Benoît Perthame, Lemmes de moments, de moyenne et de dispersion, C. R. Acad. Sci. Paris Sér. I Math. 314 (1992), 801-806 Zbl0761.35085MR1166050
  13. Benoît Perthame, Mathematical tools for kinetic equations, Bull. Amer. Math. Soc. (N.S.) 41 (2004), 205-244 (electronic) Zbl1151.82351MR2043752
  14. Luc Robbiano, Claude Zuily, Strichartz estimates for Schrödinger equations with variable coefficients, Mém. Soc. Math. Fr. (N.S.) (2005) Zbl1097.35002MR2193021
  15. Delphine Salort, Dispersion and Strichartz estimates for the Liouville equation, Preprint (2005) Zbl1154.35043MR2214601
  16. Delphine Salort, The Schrödinger equation type with a nonelliptic operator., Soumis. (2005) Zbl05150091
  17. Delphine Salort, Weighted dispersion and Strichartz estimates for the Liouville equation in one dimension., Asymptotic Analysis 47 (2006), 85-94 Zbl1122.35019MR2224407
  18. Hart F. Smith, Christopher D. Sogge, Global Strichartz estimates for nontrapping perturbations of the Laplacian, Comm. Partial Differential Equations 25 (2000), 2171-2183 Zbl0972.35014MR1789924
  19. Gigliola Staffilani, Daniel Tataru, Strichartz estimates for a Schrödinger operator with nonsmooth coefficients, Comm. Partial Differential Equations 27 (2002), 1337-1372 Zbl1010.35015MR1924470

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.