Quantum decay rates in chaotic scattering
Stéphane Nonnenmacher[1]; Maciej Zworski[2]
- [1] Service de Physique Théorique, CEA/DSM/PhT, Unité de recherche associé CNRS, CEA/Saclay, 91191 Gif-sur-Yvette, France
- [2] Mathematics Department, University of California Evans Hall, Berkeley, CA 94720, USA
Séminaire Équations aux dérivées partielles (2005-2006)
- Volume: 203, Issue: 2, page 1-6
Access Full Article
topHow to cite
topNonnenmacher, Stéphane, and Zworski, Maciej. "Quantum decay rates in chaotic scattering." Séminaire Équations aux dérivées partielles 203.2 (2005-2006): 1-6. <http://eudml.org/doc/11135>.
@article{Nonnenmacher2005-2006,
affiliation = {Service de Physique Théorique, CEA/DSM/PhT, Unité de recherche associé CNRS, CEA/Saclay, 91191 Gif-sur-Yvette, France; Mathematics Department, University of California Evans Hall, Berkeley, CA 94720, USA},
author = {Nonnenmacher, Stéphane, Zworski, Maciej},
journal = {Séminaire Équations aux dérivées partielles},
keywords = {hyperbolic flow; scattering; resonances; topological pressure},
language = {eng},
number = {2},
pages = {1-6},
publisher = {Centre de mathématiques Laurent Schwartz, École polytechnique},
title = {Quantum decay rates in chaotic scattering},
url = {http://eudml.org/doc/11135},
volume = {203},
year = {2005-2006},
}
TY - JOUR
AU - Nonnenmacher, Stéphane
AU - Zworski, Maciej
TI - Quantum decay rates in chaotic scattering
JO - Séminaire Équations aux dérivées partielles
PY - 2005-2006
PB - Centre de mathématiques Laurent Schwartz, École polytechnique
VL - 203
IS - 2
SP - 1
EP - 6
LA - eng
KW - hyperbolic flow; scattering; resonances; topological pressure
UR - http://eudml.org/doc/11135
ER -
References
top- N. Anantharaman, Entropy and the localization of eigenfunctions, preprint (2004-2006), to appear in Ann. of Math.
- N. Anantharaman and S. Nonnenmacher, Half-delocalization of eigenfunctions of the Laplacian, in preparation (2006). Zbl1145.81033
- R. Bowen and D. Ruelle, The ergodic theory of Axiom A flows, Invent. math. 29 (1975), 181–202 Zbl0311.58010MR380889
- N. Burq, Contrôle de l’équation des plaques en présence d’obstacle stictement convexes. Mémoires de la Société Mathématique de France, Sér. 2, 55 (1993), 3-126. Zbl0930.93007
- P. Gaspard and S.A. Rice, Semiclassical quantization of the scattering from a classically chaotic repellor, J. Chem. Phys. 90(1989), 2242-2254. MR980393
- M. Ikawa, Decay of solutions of the wave equation in the exterior of several convex bodies, Ann. Inst. Fourier, 38(1988), 113-146. Zbl0636.35045MR949013
- A. Katok and B. Hasselblatt, Introduction to the Modern Theory of Dynamical Systems, Cambridge University Press, 1997. Zbl0878.58020MR1326374
- K. Lin, Numerical study of quantum resonances in chaotic scattering, J. Comp. Phys. 176(2002), 295-329, Zbl1021.81021MR1894769
- K. Lin and M. Zworski, Quantum resonances in chaotic scattering, Chem. Phys. Lett. 355(2002), 201-205.
- W. Lu, S. Sridhar, and M. Zworski, Fractal Weyl laws for chaotic open systems, Phys. Rev. Lett. 91(2003), 154101.
- T. Morita, Periodic orbits of a dynamical system in a compound central field and a perturbed billiards system. Ergodic Theory Dynam. Systems 14(1994), 599–619. Zbl0810.58014MR1293411
- F. Naud, Classical and Quantum lifetimes on some non-compact Riemann surfaces, Journal of Physics A, 38(2005), 10721-10729. Zbl1082.81026MR2197679
- S. Nonnenmacher and M. Zworski, Distribution of resonances for open quantum maps, preprint 2005, math-ph/0505034, Fractal Weyl laws in discrete models of chaotic scattering, Journal of Physics A, 38(2005), 10683-10702. Zbl1082.81079MR2197677
- S. Nonnenmacher and M. Zworski, Lower bounds for quantum decay rates in chaotic scattering, in preparation. Zbl1226.35061
- Ya. B. Pesin and V. Sadovskaya, Multifractal Analysis of Conformal Axiom A Flows, Comm. Math. Phys. 216(2001), 277-312. Zbl0992.37023MR1814848
- H. Schomerus and J. Tworzydło and, Quantum-to-classical crossover of quasi-bound states in open quantum systems, Phys. Rev. Lett. Phys. Rev. Lett. 93(2004), 154102.
- J. Sjöstrand, Geometric bounds on the density of resonances for semiclassical problems, Duke Math. J., 60(1990), 1–57 Zbl0702.35188MR1047116
- J. Sjöstrand and M. Zworski, Fractal upper bounds on the density of semiclassical resonances,http://math.berkeley.edu/~zworski/sz10.ps.gz, to appear in Duke Math. J. Zbl1201.35189MR2309150
- J. Strain and M. Zworski, Growth of the zeta function for a quadratic map and the dimension of the Julia set, Nonlinearity, 17(2004), 1607-1622. Zbl1066.37031MR2086141
- A. Wirzba, Quantum Mechanics and Semiclassics of Hyperbolic n-Disk Scattering Systems, Physics Reports 309 (1999) 1-116 MR1671688
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.