Quantum decay rates in chaotic scattering

Stéphane Nonnenmacher[1]; Maciej Zworski[2]

  • [1] Service de Physique Théorique, CEA/DSM/PhT, Unité de recherche associé CNRS, CEA/Saclay, 91191 Gif-sur-Yvette, France
  • [2] Mathematics Department, University of California Evans Hall, Berkeley, CA 94720, USA

Séminaire Équations aux dérivées partielles (2005-2006)

  • Volume: 203, Issue: 2, page 1-6

How to cite

top

Nonnenmacher, Stéphane, and Zworski, Maciej. "Quantum decay rates in chaotic scattering." Séminaire Équations aux dérivées partielles 203.2 (2005-2006): 1-6. <http://eudml.org/doc/11135>.

@article{Nonnenmacher2005-2006,
affiliation = {Service de Physique Théorique, CEA/DSM/PhT, Unité de recherche associé CNRS, CEA/Saclay, 91191 Gif-sur-Yvette, France; Mathematics Department, University of California Evans Hall, Berkeley, CA 94720, USA},
author = {Nonnenmacher, Stéphane, Zworski, Maciej},
journal = {Séminaire Équations aux dérivées partielles},
keywords = {hyperbolic flow; scattering; resonances; topological pressure},
language = {eng},
number = {2},
pages = {1-6},
publisher = {Centre de mathématiques Laurent Schwartz, École polytechnique},
title = {Quantum decay rates in chaotic scattering},
url = {http://eudml.org/doc/11135},
volume = {203},
year = {2005-2006},
}

TY - JOUR
AU - Nonnenmacher, Stéphane
AU - Zworski, Maciej
TI - Quantum decay rates in chaotic scattering
JO - Séminaire Équations aux dérivées partielles
PY - 2005-2006
PB - Centre de mathématiques Laurent Schwartz, École polytechnique
VL - 203
IS - 2
SP - 1
EP - 6
LA - eng
KW - hyperbolic flow; scattering; resonances; topological pressure
UR - http://eudml.org/doc/11135
ER -

References

top
  1. N. Anantharaman, Entropy and the localization of eigenfunctions, preprint (2004-2006), to appear in Ann. of Math. 
  2. N. Anantharaman and S. Nonnenmacher, Half-delocalization of eigenfunctions of the Laplacian, in preparation (2006). Zbl1145.81033
  3. R. Bowen and D. Ruelle, The ergodic theory of Axiom A flows, Invent. math. 29 (1975), 181–202 Zbl0311.58010MR380889
  4. N. Burq, Contrôle de l’équation des plaques en présence d’obstacle stictement convexes. Mémoires de la Société Mathématique de France, Sér. 2, 55 (1993), 3-126. Zbl0930.93007
  5. P. Gaspard and S.A. Rice, Semiclassical quantization of the scattering from a classically chaotic repellor, J. Chem. Phys. 90(1989), 2242-2254. MR980393
  6. M. Ikawa, Decay of solutions of the wave equation in the exterior of several convex bodies, Ann. Inst. Fourier, 38(1988), 113-146. Zbl0636.35045MR949013
  7. A. Katok and B. Hasselblatt, Introduction to the Modern Theory of Dynamical Systems, Cambridge University Press, 1997. Zbl0878.58020MR1326374
  8. K. Lin, Numerical study of quantum resonances in chaotic scattering, J. Comp. Phys. 176(2002), 295-329, Zbl1021.81021MR1894769
  9. K. Lin and M. Zworski, Quantum resonances in chaotic scattering, Chem. Phys. Lett. 355(2002), 201-205. 
  10. W. Lu, S. Sridhar, and M. Zworski, Fractal Weyl laws for chaotic open systems, Phys. Rev. Lett. 91(2003), 154101. 
  11. T. Morita, Periodic orbits of a dynamical system in a compound central field and a perturbed billiards system. Ergodic Theory Dynam. Systems 14(1994), 599–619. Zbl0810.58014MR1293411
  12. F. Naud, Classical and Quantum lifetimes on some non-compact Riemann surfaces, Journal of Physics A, 38(2005), 10721-10729. Zbl1082.81026MR2197679
  13. S. Nonnenmacher and M. Zworski, Distribution of resonances for open quantum maps, preprint 2005, math-ph/0505034, Fractal Weyl laws in discrete models of chaotic scattering, Journal of Physics A, 38(2005), 10683-10702. Zbl1082.81079MR2197677
  14. S. Nonnenmacher and M. Zworski, Lower bounds for quantum decay rates in chaotic scattering, in preparation. Zbl1226.35061
  15. Ya. B. Pesin and V. Sadovskaya, Multifractal Analysis of Conformal Axiom A Flows, Comm. Math. Phys. 216(2001), 277-312. Zbl0992.37023MR1814848
  16. H. Schomerus and J. Tworzydło and, Quantum-to-classical crossover of quasi-bound states in open quantum systems, Phys. Rev. Lett. Phys. Rev. Lett. 93(2004), 154102. 
  17. J. Sjöstrand, Geometric bounds on the density of resonances for semiclassical problems, Duke Math. J., 60(1990), 1–57 Zbl0702.35188MR1047116
  18. J. Sjöstrand and M. Zworski, Fractal upper bounds on the density of semiclassical resonances,http://math.berkeley.edu/~zworski/sz10.ps.gz, to appear in Duke Math. J. Zbl1201.35189MR2309150
  19. J. Strain and M. Zworski, Growth of the zeta function for a quadratic map and the dimension of the Julia set, Nonlinearity, 17(2004), 1607-1622. Zbl1066.37031MR2086141
  20. A. Wirzba, Quantum Mechanics and Semiclassics of Hyperbolic n-Disk Scattering Systems, Physics Reports 309 (1999) 1-116 MR1671688

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.