Lagrangian tori and spectra for non-selfadjoint operators (based on joint works with J. Sjöstrand and S. Vũ Ngọc)
- [1] Department of Mathematics, UCLA, CA 90095-1555, USA
Séminaire Équations aux dérivées partielles (2005-2006)
- page 1-14
Access Full Article
topHow to cite
topHitrik, Michael. "Lagrangian tori and spectra for non-selfadjoint operators (based on joint works with J. Sjöstrand and S. Vũ Ngọc)." Séminaire Équations aux dérivées partielles (2005-2006): 1-14. <http://eudml.org/doc/11136>.
@article{Hitrik2005-2006,
affiliation = {Department of Mathematics, UCLA, CA 90095-1555, USA},
author = {Hitrik, Michael},
journal = {Séminaire Équations aux dérivées partielles},
keywords = {Non-selfadjoint; eigenvalue; spectral asymptotics; Lagrangian torus; Diophantine condition; completely integrable; KAM; rational torus},
language = {eng},
pages = {1-14},
publisher = {Centre de mathématiques Laurent Schwartz, École polytechnique},
title = {Lagrangian tori and spectra for non-selfadjoint operators (based on joint works with J. Sjöstrand and S. Vũ Ngọc)},
url = {http://eudml.org/doc/11136},
year = {2005-2006},
}
TY - JOUR
AU - Hitrik, Michael
TI - Lagrangian tori and spectra for non-selfadjoint operators (based on joint works with J. Sjöstrand and S. Vũ Ngọc)
JO - Séminaire Équations aux dérivées partielles
PY - 2005-2006
PB - Centre de mathématiques Laurent Schwartz, École polytechnique
SP - 1
EP - 14
LA - eng
KW - Non-selfadjoint; eigenvalue; spectral asymptotics; Lagrangian torus; Diophantine condition; completely integrable; KAM; rational torus
UR - http://eudml.org/doc/11136
ER -
References
top- L. Boutet de Monvel and J. Sjöstrand, Sur la singularité des noyaux de Bergman et de Szegö, Journées Équations aux Dérivées Partielles de Rennes (1975), Astérisque 34–35 (1976), 123–164. Zbl0344.32010MR590106
- H. Broer and G. B. Huitema, A proof of the isoenergetic KAM theorem from the “ordinary” one, Journal of Differential Equations, 90 (1991), 52–60. Zbl0721.58020
- N. Burq and M. Hitrik, Energy decay for damped wave equations on partially rectangular domains, Math. Research Letters, to appear. Zbl1122.35015MR2289618
- Y. Colin de Verdière, Quasi-modes sur les variétés riemanniennes, Inv. Math. 43 (1977), 15–52. Zbl0449.53040MR501196
- Y. Colin de Verdière, Sur le spectre des opérateurs elliptiques a bicaractéristiques toutes periodiques, Comment Math. Helv. 54 (1979), 508-522. Zbl0459.58014MR543346
- Y. Colin de Verdière, Méthodes semi-classiques et théorie spectrale, Cours de DEA, Institut Fourier, 1992.
- Y. Colin de Verdière and S. Vũ Ngọc, Singular Bohr-Sommerfeld rules for 2D integrable systems, Ann. Sci. École Norm. Sup. 36 (2003), 1–55. Zbl1028.81026MR1987976
- N. Dencker, J. Sjöstrand, and M. Zworski, Pseudospectra of semiclassical (pseudo)differential operators, Comm. Pure Appl. Math. 57 (2004), 384–415. Zbl1054.35035MR2020109
- M. Dimassi and J. Sjöstrand, Spectral asymptotics in the semi-classical limit, Cambridge University Press, Cambridge, 1999. Zbl0926.35002MR1735654
- I. C. Gohberg and M. G. Krein, Introduction to the theory of linear nonselfadjoint operators, Translations of Mathematical Monographs, Vol. 18 American Mathematical Society, Providence, R.I. 1969. Zbl0181.13504MR246142
- M. Hitrik, Eigenfrequencies for damped wave equations on Zoll manifolds, Asymptot. Analysis, 31 (2002), 265–277. Zbl1032.58014MR1937840
- M. Hitrik and J. Sjöstrand, Non-selfadjoint perturbations of selfadjoint operators in 2 dimensions I, Ann. Henri Poincaré 5 (2004), 1–73. Zbl1059.47056MR2036816
- M. Hitrik and J. Sjöstrand, Non-selfadjoint perturbations of selfadjoint operators in 2 dimensions II. Vanishing averages, Comm. Partial Differential Equations 30 (2005), 1065–1106. Zbl1096.47053MR2180295
- M. Hitrik and J. Sjöstrand, Non-selfadjoint perturbations of selfadjoint operators in 2 dimensions III a. One branching point, submitted. Zbl1096.47053
- M. Hitrik and J. Sjöstrand, Rational tori and spectra for non-selfadjoint operators in dimension 2, in preparation. Zbl1171.35131
- M. Hitrik, J. Sjöstrand, and S. Vũ Ngọc, Diophantine tori and spectral asymptotics for non-selfadjoint operators, American Journal of Mathematics, to appear. Zbl1172.35085
- V. Ivrii, Microlocal analysis and precise spectral asymptotics, Springer–Verlag, Berlin, 1998. Zbl0906.35003MR1631419
- N. Kaidi and P. Kerdelhué, Forme normale de Birkhoff et résonances, Asymptot. Analysis, 23 (2000), 1–21. Zbl0955.35009MR1764337
- H. Koch and D. Tataru, On the spectrum of hyperbolic semigroups, Comm. Partial Differential Equations 20 (1995), 901–937. Zbl0823.35108MR1326911
- V. F. Lazutkin, KAM theory and semiclassical approximations to eigenfunctions. With an Addendum by A. I. Shnirelman. Ergebnisse der Mathematik und ihrer Grenzgebiete, Springer-Verlag, Berlin, 1993. Zbl0814.58001MR1239173
- G. Lebeau, Equation des ondes amorties. Algebraic and geometric methods in mathematical physics (Kaciveli 1993), 73–109, Math. Phys. Stud., 19, Kluwer Acad. Publ., Dordrecht, 1996. Zbl0863.58068MR1385677
- A. J. Lichtenberg and M. A. Lieberman, Regular and chaotic dynamics, Second edition. Springer–Verlag, New York, 1992. Zbl0748.70001MR1169466
- A. S. Markus, Introduction to the spectral theory of polynomial operator pencils, Translations of Mathematical Monographs 71, American Mathematical Society, Providence RI, 1998. Zbl0678.47005MR971506
- A. Melin and J. Sjöstrand, Determinats of pseudodifferential operators and complex deformations of phase space, Methods and Applications of Analysis 9 (2002), 177–238. Zbl1082.35176MR1957486
- A. Melin and J. Sjöstrand, Bohr-Sommerfeld quantization condition for non-selfadjoint operators in dimension 2, Astérisque 284 (2003), 181–244. Zbl1061.35186MR2003421
- G. Popov, Invariant tori, effective stability, and quasimodes with exponentially small error terms. I. Birkhoff normal forms, Ann. Henri Poincaré 1 (2000), 223–248. Zbl0970.37050MR1770799
- G. Popov, Invariant tori, effective stability, and quasimodes with exponentially small error terms. II. Quantum Birkhoff normal forms, Ann. Henri Poincaré 1(2000), 249–279. Zbl1002.37028MR1770800
- J. Rauch and M. Taylor, Decay of solutions to nondissipative hyperbolic systems on compact manifolds, Comm. Pure Appl. Math. 28 (1975), 501–523. Zbl0295.35048MR397184
- J. Sjöstrand, Singularités analytiques microlocales, Astérisque, 1982. Zbl0524.35007MR699623
- J. Sjöstrand, Function space associated to global –Lagrangian manifolds, Structure of solutions of differential equations (Katata/Kyoto, 1995), 369–423, World Sci. Publishing, River Edge, NJ, 1996. Zbl0889.46027MR1445350
- J. Sjöstrand, Asymptotic distribution of eigenfrequencies for damped wave equations, Publ. Res. Inst. Math. Sci. 36 (2000), 573–611. Zbl0984.35121MR1798488
- J. Sjöstrand, Perturbations of selfadjoint operators with periodic classical flow, RIMS Kokyuroku 1315 (April 2003), “Wave Phenomena and asymptotic analysis”, 1–23.
- J. Sjöstrand and M. Zworski, Asymptotic distribution of resonances for convex obstacles, Acta Math. 183 (1999), 191–253. Zbl0989.35099MR1738044
- A. Weinstein, Asymptotics of eigenvalue clusters for the Laplacian plus a potential, Duke Math. J. 44 (1977), 883–892. Zbl0385.58013MR482878
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.