Lagrangian tori and spectra for non-selfadjoint operators (based on joint works with J. Sjöstrand and S. Vũ Ngọc)

Michael Hitrik[1]

  • [1] Department of Mathematics, UCLA, CA 90095-1555, USA

Séminaire Équations aux dérivées partielles (2005-2006)

  • page 1-14

How to cite

top

Hitrik, Michael. "Lagrangian tori and spectra for non-selfadjoint operators (based on joint works with J. Sjöstrand and S. Vũ Ngọc)." Séminaire Équations aux dérivées partielles (2005-2006): 1-14. <http://eudml.org/doc/11136>.

@article{Hitrik2005-2006,
affiliation = {Department of Mathematics, UCLA, CA 90095-1555, USA},
author = {Hitrik, Michael},
journal = {Séminaire Équations aux dérivées partielles},
keywords = {Non-selfadjoint; eigenvalue; spectral asymptotics; Lagrangian torus; Diophantine condition; completely integrable; KAM; rational torus},
language = {eng},
pages = {1-14},
publisher = {Centre de mathématiques Laurent Schwartz, École polytechnique},
title = {Lagrangian tori and spectra for non-selfadjoint operators (based on joint works with J. Sjöstrand and S. Vũ Ngọc)},
url = {http://eudml.org/doc/11136},
year = {2005-2006},
}

TY - JOUR
AU - Hitrik, Michael
TI - Lagrangian tori and spectra for non-selfadjoint operators (based on joint works with J. Sjöstrand and S. Vũ Ngọc)
JO - Séminaire Équations aux dérivées partielles
PY - 2005-2006
PB - Centre de mathématiques Laurent Schwartz, École polytechnique
SP - 1
EP - 14
LA - eng
KW - Non-selfadjoint; eigenvalue; spectral asymptotics; Lagrangian torus; Diophantine condition; completely integrable; KAM; rational torus
UR - http://eudml.org/doc/11136
ER -

References

top
  1. L. Boutet de Monvel and J. Sjöstrand, Sur la singularité des noyaux de Bergman et de Szegö, Journées Équations aux Dérivées Partielles de Rennes (1975), Astérisque 34–35 (1976), 123–164. Zbl0344.32010MR590106
  2. H. Broer and G. B. Huitema, A proof of the isoenergetic KAM theorem from the “ordinary” one, Journal of Differential Equations, 90 (1991), 52–60. Zbl0721.58020
  3. N. Burq and M. Hitrik, Energy decay for damped wave equations on partially rectangular domains, Math. Research Letters, to appear. Zbl1122.35015MR2289618
  4. Y. Colin de Verdière, Quasi-modes sur les variétés riemanniennes, Inv. Math. 43 (1977), 15–52. Zbl0449.53040MR501196
  5. Y. Colin de Verdière, Sur le spectre des opérateurs elliptiques a bicaractéristiques toutes periodiques, Comment Math. Helv. 54 (1979), 508-522. Zbl0459.58014MR543346
  6. Y. Colin de Verdière, Méthodes semi-classiques et théorie spectrale, Cours de DEA, Institut Fourier, 1992. 
  7. Y. Colin de Verdière and S. Vũ Ngọc, Singular Bohr-Sommerfeld rules for 2D integrable systems, Ann. Sci. École Norm. Sup. 36 (2003), 1–55. Zbl1028.81026MR1987976
  8. N. Dencker, J. Sjöstrand, and M. Zworski, Pseudospectra of semiclassical (pseudo)differential operators, Comm. Pure Appl. Math. 57 (2004), 384–415. Zbl1054.35035MR2020109
  9. M. Dimassi and J. Sjöstrand, Spectral asymptotics in the semi-classical limit, Cambridge University Press, Cambridge, 1999. Zbl0926.35002MR1735654
  10. I. C. Gohberg and M. G. Krein, Introduction to the theory of linear nonselfadjoint operators, Translations of Mathematical Monographs, Vol. 18 American Mathematical Society, Providence, R.I. 1969. Zbl0181.13504MR246142
  11. M. Hitrik, Eigenfrequencies for damped wave equations on Zoll manifolds, Asymptot. Analysis, 31 (2002), 265–277. Zbl1032.58014MR1937840
  12. M. Hitrik and J. Sjöstrand, Non-selfadjoint perturbations of selfadjoint operators in 2 dimensions I, Ann. Henri Poincaré 5 (2004), 1–73. Zbl1059.47056MR2036816
  13. M. Hitrik and J. Sjöstrand, Non-selfadjoint perturbations of selfadjoint operators in 2 dimensions II. Vanishing averages, Comm. Partial Differential Equations 30 (2005), 1065–1106. Zbl1096.47053MR2180295
  14. M. Hitrik and J. Sjöstrand, Non-selfadjoint perturbations of selfadjoint operators in 2 dimensions III a. One branching point, submitted. Zbl1096.47053
  15. M. Hitrik and J. Sjöstrand, Rational tori and spectra for non-selfadjoint operators in dimension 2, in preparation. Zbl1171.35131
  16. M. Hitrik, J. Sjöstrand, and S. Vũ Ngọc, Diophantine tori and spectral asymptotics for non-selfadjoint operators, American Journal of Mathematics, to appear. Zbl1172.35085
  17. V. Ivrii, Microlocal analysis and precise spectral asymptotics, Springer–Verlag, Berlin, 1998. Zbl0906.35003MR1631419
  18. N. Kaidi and P. Kerdelhué, Forme normale de Birkhoff et résonances, Asymptot. Analysis, 23 (2000), 1–21. Zbl0955.35009MR1764337
  19. H. Koch and D. Tataru, On the spectrum of hyperbolic semigroups, Comm. Partial Differential Equations 20 (1995), 901–937. Zbl0823.35108MR1326911
  20. V. F. Lazutkin, KAM theory and semiclassical approximations to eigenfunctions. With an Addendum by A. I. Shnirelman. Ergebnisse der Mathematik und ihrer Grenzgebiete, Springer-Verlag, Berlin, 1993. Zbl0814.58001MR1239173
  21. G. Lebeau, Equation des ondes amorties. Algebraic and geometric methods in mathematical physics (Kaciveli 1993), 73–109, Math. Phys. Stud., 19, Kluwer Acad. Publ., Dordrecht, 1996. Zbl0863.58068MR1385677
  22. A. J. Lichtenberg and M. A. Lieberman, Regular and chaotic dynamics, Second edition. Springer–Verlag, New York, 1992. Zbl0748.70001MR1169466
  23. A. S. Markus, Introduction to the spectral theory of polynomial operator pencils, Translations of Mathematical Monographs 71, American Mathematical Society, Providence RI, 1998. Zbl0678.47005MR971506
  24. A. Melin and J. Sjöstrand, Determinats of pseudodifferential operators and complex deformations of phase space, Methods and Applications of Analysis 9 (2002), 177–238. Zbl1082.35176MR1957486
  25. A. Melin and J. Sjöstrand, Bohr-Sommerfeld quantization condition for non-selfadjoint operators in dimension 2, Astérisque 284 (2003), 181–244. Zbl1061.35186MR2003421
  26. G. Popov, Invariant tori, effective stability, and quasimodes with exponentially small error terms. I. Birkhoff normal forms, Ann. Henri Poincaré 1 (2000), 223–248. Zbl0970.37050MR1770799
  27. G. Popov, Invariant tori, effective stability, and quasimodes with exponentially small error terms. II. Quantum Birkhoff normal forms, Ann. Henri Poincaré 1(2000), 249–279. Zbl1002.37028MR1770800
  28. J. Rauch and M. Taylor, Decay of solutions to nondissipative hyperbolic systems on compact manifolds, Comm. Pure Appl. Math. 28 (1975), 501–523. Zbl0295.35048MR397184
  29. J. Sjöstrand, Singularités analytiques microlocales, Astérisque, 1982. Zbl0524.35007MR699623
  30. J. Sjöstrand, Function space associated to global I –Lagrangian manifolds, Structure of solutions of differential equations (Katata/Kyoto, 1995), 369–423, World Sci. Publishing, River Edge, NJ, 1996. Zbl0889.46027MR1445350
  31. J. Sjöstrand, Asymptotic distribution of eigenfrequencies for damped wave equations, Publ. Res. Inst. Math. Sci. 36 (2000), 573–611. Zbl0984.35121MR1798488
  32. J. Sjöstrand, Perturbations of selfadjoint operators with periodic classical flow, RIMS Kokyuroku 1315 (April 2003), “Wave Phenomena and asymptotic analysis”, 1–23. 
  33. J. Sjöstrand and M. Zworski, Asymptotic distribution of resonances for convex obstacles, Acta Math. 183 (1999), 191–253. Zbl0989.35099MR1738044
  34. A. Weinstein, Asymptotics of eigenvalue clusters for the Laplacian plus a potential, Duke Math. J. 44 (1977), 883–892. Zbl0385.58013MR482878

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.