Singular Bohr–Sommerfeld rules for 2D integrable systems

Yves Colin de Verdière; San Vũ Ngọc

Annales scientifiques de l'École Normale Supérieure (2003)

  • Volume: 36, Issue: 1, page 1-55
  • ISSN: 0012-9593

How to cite

top

Colin de Verdière, Yves, and Vũ Ngọc, San. "Singular Bohr–Sommerfeld rules for 2D integrable systems." Annales scientifiques de l'École Normale Supérieure 36.1 (2003): 1-55. <http://eudml.org/doc/82596>.

@article{ColindeVerdière2003,
author = {Colin de Verdière, Yves, Vũ Ngọc, San},
journal = {Annales scientifiques de l'École Normale Supérieure},
keywords = {semiclassical completely integrable systems; nondegenerate singularities; Morse-Bott singularities; focus-focus singularities; numerical test},
language = {eng},
number = {1},
pages = {1-55},
publisher = {Elsevier},
title = {Singular Bohr–Sommerfeld rules for 2D integrable systems},
url = {http://eudml.org/doc/82596},
volume = {36},
year = {2003},
}

TY - JOUR
AU - Colin de Verdière, Yves
AU - Vũ Ngọc, San
TI - Singular Bohr–Sommerfeld rules for 2D integrable systems
JO - Annales scientifiques de l'École Normale Supérieure
PY - 2003
PB - Elsevier
VL - 36
IS - 1
SP - 1
EP - 55
LA - eng
KW - semiclassical completely integrable systems; nondegenerate singularities; Morse-Bott singularities; focus-focus singularities; numerical test
UR - http://eudml.org/doc/82596
ER -

References

top
  1. [1] Ahlfors L., Sario S., Riemann Surfaces, Princeton University Press, 1960. Zbl0196.33801MR124486
  2. [2] Audin M., Courbes algébriques et systèmes intégrables: géodésiques des quadriques, Expositiones Math.12 (1994) 193-226. Zbl0843.58064MR1295705
  3. [3] Bates L., Cushman R., Global Aspects of Classical Integrable Systems, Birkhäuser, 1998. Zbl0882.58023MR1438060
  4. [4] Bates S., Weinstein A., Lectures on the Geometry of Quantization, Berkeley Mathematics Lecture Notes, 8, AMS, 1997. Zbl1049.53061MR1806388
  5. [5] Child M.S., Semiclassical Mechanics with Molecular Applications, Oxford University Press, 1991. 
  6. [6] Colin de Verdière Y., Sur le spectre des opérateurs à bicaractéristiques toutes périodiques, Comment. Math. Helv.54 (1979) 508-522. Zbl0459.58014MR543346
  7. [7] Colin de Verdière Y., Sur le spectre des opérateurs elliptiques à bicaractéristiques toutes périodiques, Math. Z.171 (1980) 51-73. MR566483
  8. [8] Colin de Verdière Y., Parisse B., Équilibre instable en régime semi-classique I: Concentration microlocale, Comm. Partial Differential Equations19 (9–10) (1994) 1535-1563. Zbl0819.35116MR1294470
  9. [9] Colin de Verdière Y., Parisse B., Équilibre instable en régime semi-classique II: Conditions de Bohr–Sommerfeld, Ann. Inst. H. Poincaré. Phys. Théor.61 (3) (1994) 347-367. Zbl0845.35076MR1311072
  10. [10] Colin de Verdière Y., Parisse B., Singular Bohr–Sommerfeld rules, Comm. Math. Phys.205 (1999) 459-500. Zbl1157.81310MR1712567
  11. [11] Colin de Verdière Y., Vey J., Le lemme de Morse isochore, Topology18 (1979) 283-293. Zbl0441.58003MR551010
  12. [12] Darboux G., Théorie générale des surfaces, Chelsea, 1972. 
  13. [13] Duistermaat J., Oscillatory integrals, Lagrange immersions and unfoldings of singularities, Comm. Pure Appl. Math.27 (1974) 207-281. Zbl0285.35010MR405513
  14. [14] Fomenko A., Topological Classification of Integrable Systems, Advances in Soviet Mathematics, 6, AMS, 1991. Zbl0741.00026MR1141218
  15. [15] Guillemin V., Some spectral results for the Laplace operator with potential on the n-sphere, Adv. in Math.27 (1978) 273-286. Zbl0433.35052MR478245
  16. [16] Guillemin V., Some spectral results on rank one symmetric spaces, Adv. in Math.28 (1978) 129-137. Zbl0441.58012MR494331
  17. [17] Guillemin V., Band asymptotics in two dimensions, Adv. in Math.42 (1981) 248-282. Zbl0478.58029MR642393
  18. [18] Guillemin V., Schaeffer D., On a certain class of Fuchsian partial differential equations, Duke Math. J.44 (1) (1977) 157-199. Zbl0356.35080MR430499
  19. [19] Hirzebruch F., Topological Methods in Algebraic Geometry, Grundlehren der math. W., 131, Springer, New York, 1966. Zbl0138.42001MR202713
  20. [20] Klingenberg W., Riemannian Geometry, de Gruyter, 1982. Zbl0495.53036MR666697
  21. [21] Moser J., Geometry of quadrics and spectral theory, in: The Chern Symposium, Springer, 1980, pp. 147-188. Zbl0455.58018MR609560
  22. [22] Nguyên Tiên Z., Singularities of integrable geodesic flows on multidimensional torus and sphere, J. Geom. Phys.18 (1996) 147-162. Zbl0849.58053MR1375166
  23. [23] Nguyên Tiên Z., Symplectic topology of integrable hamiltonian systems, I: Arnold–Liouville with singularities, Compositio Math.101 (1996) 179-215. Zbl0936.37042MR1389366
  24. [24] Nguyên Tiên Z., Polyakova L., Selianova E., Topological classification of integrable geodesic flows on orientable two-dimensional manifolds, Funct. Anal. Appl.27 (1993) 186-196. Zbl0804.58042MR1250980
  25. [25] Ngọ Vũ, Formes normales semi-classiques des systèmes complètement intégrables au voisinage d'un point critique de l'application moment, Asympt. Analys.24 (3,4) (2000) 319-342. Zbl0990.58018
  26. [26] Vũ Ngọc S., Sur le spectre des systèmes complètement intégrables semi-classiques avec singularités, Ph.D. thesis, Université Grenoble 1, 1998. 
  27. [27] Vũ Ngọ S., Bohr–Sommerfeld conditions for integrable systems with critical manifolds of focus–focus type, Comm. Pure Appl. Math.53 (2) (2000) 143-217. Zbl1027.81012
  28. [28] Weinstein A., Lectures on Symplectic Manifolds, Regional Conference Series in Mathematics, 29, AMS, 1976. Zbl0406.53031MR464312
  29. [29] Weinstein A., Asymptotics of eigenvalue clusters for the laplacian plus a potential, Duke Math. J.44 (4) (1977) 883-892. Zbl0385.58013MR482878
  30. [30] Weyl H., The Theory of Groups and Quantum Mechanics, Dover, 1950, Translated from the (second) German edition. Zbl0041.56804

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.