Singular Bohr–Sommerfeld rules for 2D integrable systems
Yves Colin de Verdière; San Vũ Ngọc
Annales scientifiques de l'École Normale Supérieure (2003)
- Volume: 36, Issue: 1, page 1-55
- ISSN: 0012-9593
Access Full Article
topHow to cite
topColin de Verdière, Yves, and Vũ Ngọc, San. "Singular Bohr–Sommerfeld rules for 2D integrable systems." Annales scientifiques de l'École Normale Supérieure 36.1 (2003): 1-55. <http://eudml.org/doc/82596>.
@article{ColindeVerdière2003,
author = {Colin de Verdière, Yves, Vũ Ngọc, San},
journal = {Annales scientifiques de l'École Normale Supérieure},
keywords = {semiclassical completely integrable systems; nondegenerate singularities; Morse-Bott singularities; focus-focus singularities; numerical test},
language = {eng},
number = {1},
pages = {1-55},
publisher = {Elsevier},
title = {Singular Bohr–Sommerfeld rules for 2D integrable systems},
url = {http://eudml.org/doc/82596},
volume = {36},
year = {2003},
}
TY - JOUR
AU - Colin de Verdière, Yves
AU - Vũ Ngọc, San
TI - Singular Bohr–Sommerfeld rules for 2D integrable systems
JO - Annales scientifiques de l'École Normale Supérieure
PY - 2003
PB - Elsevier
VL - 36
IS - 1
SP - 1
EP - 55
LA - eng
KW - semiclassical completely integrable systems; nondegenerate singularities; Morse-Bott singularities; focus-focus singularities; numerical test
UR - http://eudml.org/doc/82596
ER -
References
top- [1] Ahlfors L., Sario S., Riemann Surfaces, Princeton University Press, 1960. Zbl0196.33801MR124486
- [2] Audin M., Courbes algébriques et systèmes intégrables: géodésiques des quadriques, Expositiones Math.12 (1994) 193-226. Zbl0843.58064MR1295705
- [3] Bates L., Cushman R., Global Aspects of Classical Integrable Systems, Birkhäuser, 1998. Zbl0882.58023MR1438060
- [4] Bates S., Weinstein A., Lectures on the Geometry of Quantization, Berkeley Mathematics Lecture Notes, 8, AMS, 1997. Zbl1049.53061MR1806388
- [5] Child M.S., Semiclassical Mechanics with Molecular Applications, Oxford University Press, 1991.
- [6] Colin de Verdière Y., Sur le spectre des opérateurs à bicaractéristiques toutes périodiques, Comment. Math. Helv.54 (1979) 508-522. Zbl0459.58014MR543346
- [7] Colin de Verdière Y., Sur le spectre des opérateurs elliptiques à bicaractéristiques toutes périodiques, Math. Z.171 (1980) 51-73. MR566483
- [8] Colin de Verdière Y., Parisse B., Équilibre instable en régime semi-classique I: Concentration microlocale, Comm. Partial Differential Equations19 (9–10) (1994) 1535-1563. Zbl0819.35116MR1294470
- [9] Colin de Verdière Y., Parisse B., Équilibre instable en régime semi-classique II: Conditions de Bohr–Sommerfeld, Ann. Inst. H. Poincaré. Phys. Théor.61 (3) (1994) 347-367. Zbl0845.35076MR1311072
- [10] Colin de Verdière Y., Parisse B., Singular Bohr–Sommerfeld rules, Comm. Math. Phys.205 (1999) 459-500. Zbl1157.81310MR1712567
- [11] Colin de Verdière Y., Vey J., Le lemme de Morse isochore, Topology18 (1979) 283-293. Zbl0441.58003MR551010
- [12] Darboux G., Théorie générale des surfaces, Chelsea, 1972.
- [13] Duistermaat J., Oscillatory integrals, Lagrange immersions and unfoldings of singularities, Comm. Pure Appl. Math.27 (1974) 207-281. Zbl0285.35010MR405513
- [14] Fomenko A., Topological Classification of Integrable Systems, Advances in Soviet Mathematics, 6, AMS, 1991. Zbl0741.00026MR1141218
- [15] Guillemin V., Some spectral results for the Laplace operator with potential on the n-sphere, Adv. in Math.27 (1978) 273-286. Zbl0433.35052MR478245
- [16] Guillemin V., Some spectral results on rank one symmetric spaces, Adv. in Math.28 (1978) 129-137. Zbl0441.58012MR494331
- [17] Guillemin V., Band asymptotics in two dimensions, Adv. in Math.42 (1981) 248-282. Zbl0478.58029MR642393
- [18] Guillemin V., Schaeffer D., On a certain class of Fuchsian partial differential equations, Duke Math. J.44 (1) (1977) 157-199. Zbl0356.35080MR430499
- [19] Hirzebruch F., Topological Methods in Algebraic Geometry, Grundlehren der math. W., 131, Springer, New York, 1966. Zbl0138.42001MR202713
- [20] Klingenberg W., Riemannian Geometry, de Gruyter, 1982. Zbl0495.53036MR666697
- [21] Moser J., Geometry of quadrics and spectral theory, in: The Chern Symposium, Springer, 1980, pp. 147-188. Zbl0455.58018MR609560
- [22] Nguyên Tiên Z., Singularities of integrable geodesic flows on multidimensional torus and sphere, J. Geom. Phys.18 (1996) 147-162. Zbl0849.58053MR1375166
- [23] Nguyên Tiên Z., Symplectic topology of integrable hamiltonian systems, I: Arnold–Liouville with singularities, Compositio Math.101 (1996) 179-215. Zbl0936.37042MR1389366
- [24] Nguyên Tiên Z., Polyakova L., Selianova E., Topological classification of integrable geodesic flows on orientable two-dimensional manifolds, Funct. Anal. Appl.27 (1993) 186-196. Zbl0804.58042MR1250980
- [25] Ngọ Vũ, Formes normales semi-classiques des systèmes complètement intégrables au voisinage d'un point critique de l'application moment, Asympt. Analys.24 (3,4) (2000) 319-342. Zbl0990.58018
- [26] Vũ Ngọc S., Sur le spectre des systèmes complètement intégrables semi-classiques avec singularités, Ph.D. thesis, Université Grenoble 1, 1998.
- [27] Vũ Ngọ S., Bohr–Sommerfeld conditions for integrable systems with critical manifolds of focus–focus type, Comm. Pure Appl. Math.53 (2) (2000) 143-217. Zbl1027.81012
- [28] Weinstein A., Lectures on Symplectic Manifolds, Regional Conference Series in Mathematics, 29, AMS, 1976. Zbl0406.53031MR464312
- [29] Weinstein A., Asymptotics of eigenvalue clusters for the laplacian plus a potential, Duke Math. J.44 (4) (1977) 883-892. Zbl0385.58013MR482878
- [30] Weyl H., The Theory of Groups and Quantum Mechanics, Dover, 1950, Translated from the (second) German edition. Zbl0041.56804
Citations in EuDML Documents
top- Michael Hitrik, Lagrangian tori and spectra for non-selfadjoint operators (based on joint works with J. Sjöstrand and S. Vũ Ngọc)
- Eva Miranda, Nguyen Tien Zung, Equivariant normal form for nondegenerate singular orbits of integrable hamiltonian systems
- Yves Colin de Verdière, On the remainder in the Weyl formula for the Euclidean disk
- Eva Miranda, Integrable systems and group actions
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.