Estimates for the cut-off resolvent of the Laplacian for trapping obstacles

Jean-François Bony[1]; Vesselin Petkov[1]

  • [1] Département de Mathématiques Appliquées, Université Bordeaux I, 351, Cours de la Libération, 33405 Talence, France

Séminaire Équations aux dérivées partielles (2005-2006)

  • Volume: 2005-2006, page 1-12

How to cite

top

Bony, Jean-François, and Petkov, Vesselin. "Estimates for the cut-off resolvent of the Laplacian for trapping obstacles." Séminaire Équations aux dérivées partielles 2005-2006 (2005-2006): 1-12. <http://eudml.org/doc/11137>.

@article{Bony2005-2006,
affiliation = {Département de Mathématiques Appliquées, Université Bordeaux I, 351, Cours de la Libération, 33405 Talence, France; Département de Mathématiques Appliquées, Université Bordeaux I, 351, Cours de la Libération, 33405 Talence, France},
author = {Bony, Jean-François, Petkov, Vesselin},
journal = {Séminaire Équations aux dérivées partielles},
language = {eng},
pages = {1-12},
publisher = {Centre de mathématiques Laurent Schwartz, École polytechnique},
title = {Estimates for the cut-off resolvent of the Laplacian for trapping obstacles},
url = {http://eudml.org/doc/11137},
volume = {2005-2006},
year = {2005-2006},
}

TY - JOUR
AU - Bony, Jean-François
AU - Petkov, Vesselin
TI - Estimates for the cut-off resolvent of the Laplacian for trapping obstacles
JO - Séminaire Équations aux dérivées partielles
PY - 2005-2006
PB - Centre de mathématiques Laurent Schwartz, École polytechnique
VL - 2005-2006
SP - 1
EP - 12
LA - eng
UR - http://eudml.org/doc/11137
ER -

References

top
  1. J.-F. Bony, Résonances dans des domaines de taille h, Inter. Math. Res. Notes, 16 (2001), 817-847. Zbl1034.35084MR1853138
  2. J.-F. Bony and L. Michel, Microlocalization of resonant states and estimates of the residue of the scattering amplitude Comm. Math. Phys. 246 (2004), no. 2, 375–402. Zbl1062.35053MR2048563
  3. J.-F. Bony and V. Petkov, Resonances for non-trapping time-periodic perturbations, J. Phys. A: Math. Gen. 37 (2004), 9439-9449. Zbl1137.35399MR2095429
  4. J.-F. Bony and V. Petkov, Resolvent estimates and local energy decay of hyperbolic equations, Around Hyberbolic Systems, Conference to the memory of Stefano Benvenutti, Ferrara 2005, to appear. MR2273096
  5. N. Burq, Décroissance de l’énergie locale de l’équation des ondes pour le problème extérieur et absence de résonances au voisinage du réel, Acta Math. 180 (1998), 1-29. Zbl0918.35081
  6. N. Burq, Semi-classical estimates for the resolvent in non-trapping geometries, Inter. Math. Res. Notes, 5 (2002), 221-241. Zbl1161.81368MR1876933
  7. N. Burq, Global Strichartz estimates for nontrapping geometries: About an article by H. Smith and C. Sogge, Comm. Partial Differential Equations, 28 (2003), no. 9-10, 1675–1683. Zbl1026.35020MR2001179
  8. N. Burq, Smoothing effect for Schrödinger boundary value problems, Duke Math. J. 123 (2004), no. 2, 403–427. Zbl1061.35024MR2066943
  9. M. Ikawa, Decay of solutions of the wave equation in the exterior of several convex bodies, Ann. Inst. Fourier, 38 (1989), 113-146. Zbl0636.35045MR949013
  10. C. Gérard, Asymptotique des pôles de la matrice de scattering pour deux obstacles strictement convexes, Bulletin de SMF, Mémoire no. 31, 116(1), (1988). Zbl0654.35081MR998698
  11. I. Herbst, Contraction semigroups and the spectrum of A 1 I + I A 2 , J. Oper. Theory, 7 (1982), 61-78. Zbl0484.47017MR650193
  12. R. Melrose and J. Sjöstrand, Singularities of boundary value problems, Comm. Pure Appl. Math. I, 31 (1978), 593-617, II, 35 (1982), 129-168. Zbl0546.35083
  13. C. Morawetz, Decay estimates of the exterior problem for the wave equation, Comm. Appl. Math. 28 (1975), 229-264. Zbl0304.35064MR372432
  14. P. D. Lax and R.S. Phillips, Scattering Theory, Academic Press, 2nd Edition, 1989. Zbl0697.35004MR1037774
  15. V. Petkov and L. Stoyanov, Trapping obstacles and singularities of the scattering kernel, Colloque Franco-Tunisien d’EDP, Hammamet, 2003, Séminaires et Congrès, SMF, to appear. Zbl0887.35114
  16. V. Petkov, Global Strichartz estimates for the wave equation with time-periodic potentials, J. Funct. Anal., to appear. Zbl1092.35018MR2225457
  17. G. Popov and G. Vodev, Distribution of the resonances and local energy decay in the transmission problem, Asymptotic Analysis, 19 (1999), 253-265. Zbl0931.35115MR1696217
  18. J. Ralston, Solutions of the wave equation with localized energy, Comm. Pure Appl. Math. 22 (1969), 807–823. Zbl0209.40402MR254433
  19. J. Sjöstrand and M. Zworski, Complex scaling and the distribution of scattering poles, J. Amer. Math. Soc. 4 (1991), 729-769. Zbl0752.35046MR1115789
  20. J. Sjöstrand, A trace formula and review of some estimates for resonances, Microlocal Analysis and spectral theory, NATO Adv. Sci. Inst. Ser. C, Math. Phys. Sci. 490 (1997), 377-437. Zbl0877.35090MR1451399
  21. J. Sjöstrand, Resonances for bottles and related trace formulae, Math. Nachr. 221 (2001), 95-149. Zbl0979.35109MR1806367
  22. S. H. Tang and M. Zworski, Resonances expansions of scattered waves, Comm. Pure Appl. Math. 53 (2000), 1305-1334. Zbl1032.35148MR1768812
  23. G. Vodev, On the uniform decay of the local energy, Serdica Math. J. 25 (1999), 191–206. Zbl0937.35118MR1742776

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.