Transport optimal et courbure de Ricci
Séminaire Équations aux dérivées partielles (2005-2006)
- Volume: 2005-2006, page 1-18
Access Full Article
topAbstract
topHow to cite
topVillani, Cédric. "Transport optimal et courbure de Ricci." Séminaire Équations aux dérivées partielles 2005-2006 (2005-2006): 1-18. <http://eudml.org/doc/11142>.
@article{Villani2005-2006,
abstract = {Des liens inattendus ont été récemment mis à jour entre le transport optimal de Monge–Kantorovich et certains problèmes de géométrie riemannienne, en liaison avec la courbure de Ricci. Une des retombées de ces interactions est la naissance d’une théorie “synthétique” des espaces métriques mesurés à courbure de Ricci minorée, venant compléter la théorie classique des espaces métriqes à courbure sectionnelle minorée. Dans ce texte (également fourni aux actes du Séminaire de Théorie Spectrale et Géométrie de Grenoble), je passerai en revue ces développements de manière concise et informelle. Les notes bibliographiques renvoient à des sources plus complètes et précises.},
author = {Villani, Cédric},
journal = {Séminaire Équations aux dérivées partielles},
keywords = {optimal transport; Riemannian geometry; Ricci curvature},
language = {eng},
pages = {1-18},
publisher = {Centre de mathématiques Laurent Schwartz, École polytechnique},
title = {Transport optimal et courbure de Ricci},
url = {http://eudml.org/doc/11142},
volume = {2005-2006},
year = {2005-2006},
}
TY - JOUR
AU - Villani, Cédric
TI - Transport optimal et courbure de Ricci
JO - Séminaire Équations aux dérivées partielles
PY - 2005-2006
PB - Centre de mathématiques Laurent Schwartz, École polytechnique
VL - 2005-2006
SP - 1
EP - 18
AB - Des liens inattendus ont été récemment mis à jour entre le transport optimal de Monge–Kantorovich et certains problèmes de géométrie riemannienne, en liaison avec la courbure de Ricci. Une des retombées de ces interactions est la naissance d’une théorie “synthétique” des espaces métriques mesurés à courbure de Ricci minorée, venant compléter la théorie classique des espaces métriqes à courbure sectionnelle minorée. Dans ce texte (également fourni aux actes du Séminaire de Théorie Spectrale et Géométrie de Grenoble), je passerai en revue ces développements de manière concise et informelle. Les notes bibliographiques renvoient à des sources plus complètes et précises.
LA - eng
KW - optimal transport; Riemannian geometry; Ricci curvature
UR - http://eudml.org/doc/11142
ER -
References
top- Ambrosio, L., Gigli, N., and Savaré, G.Gradient flows in metric spaces and in the space of probability measures. Lectures in Mathematics ETH Zürich. Birkhäuser Verlag, Basel, 2005. Zbl1090.35002MR2129498
- Brenier, Y. Décomposition polaire et réarrangement monotone des champs de vecteurs. C. R. Acad. Sci. Paris Sér. I Math. 305, 19 (1987), 805–808. Zbl0652.26017MR923203
- Brenier, Y. Polar factorization and monotone rearrangement of vector-valued functions. Comm. Pure Appl. Math. 44, 4 (1991), 375–417. Zbl0738.46011MR1100809
- Brézis, H., and Lieb, E. Sobolev inequalities with a remainder term. J. Funct. Anal. 62 (1985), 73–86. Zbl0577.46031MR790771
- Burago, D., Burago, Y., and Ivanov, S.A course in metric geometry, vol. 33 of Graduate Studies in Mathematics. American Mathematical Society, Providence, RI, 2001. A list of errata is available online at www.pdmi.ras.ru/staff/burago.html. Zbl0981.51016MR1835418
- Cabré, X. Nondivergent elliptic equations on manifolds with nonnegative curvature. Comm. Pure Appl. Math. 50, 7 (1997), 623–665. Zbl0878.58054MR1447056
- Cheeger, J., and Colding, T. H. On the structure of spaces with Ricci curvature bounded below. I. J. Differential Geom. 46, 3 (1997), 406–480. Zbl0902.53034MR1484888
- Cheeger, J., and Colding, T. H. On the structure of spaces with Ricci curvature bounded below. II. J. Differential Geom. 54, 1 (2000), 13–35. Zbl1027.53042MR1815410
- Cheeger, J., and Colding, T. H. On the structure of spaces with Ricci curvature bounded below. III. J. Differential Geom. 54, 1 (2000), 37–74. Zbl1027.53043MR1815411
- Cordero-Erausquin, D., McCann, R. J., and Schmuckenschläger, M. A Riemannian interpolation inequality à la Borell, Brascamp and Lieb. Invent. Math. 146, 2 (2001), 219–257. Zbl1026.58018MR1865396
- Cordero-Erausquin, D., Nazaret, B., and Villani, C. A mass-transportation approach to sharp Sobolev and Gagliardo-Nirenberg inequalities. Adv. Math. 182, 2 (2004), 307–332. Zbl1048.26010MR2032031
- Gromov, M. Sign and geometric meaning of curvature. Rend. Sem. Mat. Fis. Milano 61 (1991), 9–123 (1994). Zbl0820.53035MR1297501
- Jordan, R., Kinderlehrer, D., and Otto, F. The variational formulation of the Fokker-Planck equation. SIAM J. Math. Anal. 29, 1 (1998), 1–17. Zbl0915.35120MR1617171
- Lott, J., and Villani, C. Ricci curvature for metric-measure spaces via optimal transport. To appear in Ann. of Math. Available online via http://www.umpa.ens-lyon.fr/~cvillani/. Zbl1178.53038
- Lott, J., and Villani, C. Weak curvature bounds and Poincaré inequalities. Preprint, available online via http://www.umpa.ens-lyon.fr/~cvillani/. Zbl1119.53028
- Maggi, F., and Villani, C. Balls have the worst Sobolev inequalities. Part II: variants and extensions. Work in progress. Zbl1135.46016
- Maggi, F., and Villani, C. Balls have the worst best Sobolev inequalities. J. Geom. Anal. 15, 1 (2005), 83–121. Zbl1086.46021MR2132267
- Maurey, B. Inégalité de Brunn-Minkowski-Lusternik, et autres inégalités géométriques et fonctionnelles. Astérisque, 299 (2005), Exp. No. 928, vii, 95–113. Séminaire Bourbaki. Vol. 2003/2004. Zbl1101.52002MR2167203
- McCann, R. J. A convexity principle for interacting gases. Adv. Math. 128, 1 (1997), 153–179. Zbl0901.49012MR1451422
- McCann, R. J. Polar factorization of maps on Riemannian manifolds. Geom. Funct. Anal. 11, 3 (2001), 589–608. Zbl1011.58009MR1844080
- Milman, V. D., and Schechtman, G.Asymptotic theory of finite-dimensional normed spaces. Springer-Verlag, Berlin, 1986. With an appendix by M. Gromov. Zbl0606.46013MR856576
- Otto, F., and Villani, C. Generalization of an inequality by Talagrand and links with the logarithmic Sobolev inequality. J. Funct. Anal. 173, 2 (2000), 361–400. Zbl0985.58019MR1760620
- Rachev, S., and Rüschendorf, L.Mass Transportation Problems. Vol. I: Theory, Vol. II: Applications. Probability and its applications. Springer-Verlag, New York, 1998. Zbl0990.60500MR1619170
- Sturm, K.-T. On the geometry of metric measure spaces. To appear in Acta Mathematica. Zbl1105.53035
- Sturm, K.-T., and von Renesse, M.-K. Transport inequalities, gradient estimates, entropy and Ricci curvature. To appear in Comm. Pure Appl. Math. Zbl1078.53028MR2142879
- Villani, C. Optimal transport, old and new. Notes from the Saint-Flour 2005 Summer School, available online at http://www.umpa.ens-lyon.fr/~cvillani.
- Villani, C.Topics in optimal transportation, vol. 58 of Graduate Studies in Mathematics. American Mathematical Society, Providence, RI, 2003. Zbl1106.90001MR1964483
- von Renesse, M.-K. On local Poincaré via transportation. Preprint, archived at math.MG/0505588. Zbl1141.53076
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.