Nonlinear models for laser-plasma interaction
Thierry Colin; Mathieu Colin; Guy Métivier
Séminaire Équations aux dérivées partielles (2006-2007)
- page 1-10
Access Full Article
topAbstract
topHow to cite
topColin, Thierry, Colin, Mathieu, and Métivier, Guy. "Nonlinear models for laser-plasma interaction." Séminaire Équations aux dérivées partielles (2006-2007): 1-10. <http://eudml.org/doc/11145>.
@article{Colin2006-2007,
abstract = {In this paper, we present a nonlinear model for laser-plasma interaction describing the Raman amplification. This system is a quasilinear coupling of several Zakharov systems. We handle the Cauchy problem and we give some well-posedness and ill-posedness result for some subsystems.},
author = {Colin, Thierry, Colin, Mathieu, Métivier, Guy},
journal = {Séminaire Équations aux dérivées partielles},
keywords = {non-fully dispersive Zakharov system; periodic case},
language = {eng},
pages = {1-10},
publisher = {Centre de mathématiques Laurent Schwartz, École polytechnique},
title = {Nonlinear models for laser-plasma interaction},
url = {http://eudml.org/doc/11145},
year = {2006-2007},
}
TY - JOUR
AU - Colin, Thierry
AU - Colin, Mathieu
AU - Métivier, Guy
TI - Nonlinear models for laser-plasma interaction
JO - Séminaire Équations aux dérivées partielles
PY - 2006-2007
PB - Centre de mathématiques Laurent Schwartz, École polytechnique
SP - 1
EP - 10
AB - In this paper, we present a nonlinear model for laser-plasma interaction describing the Raman amplification. This system is a quasilinear coupling of several Zakharov systems. We handle the Cauchy problem and we give some well-posedness and ill-posedness result for some subsystems.
LA - eng
KW - non-fully dispersive Zakharov system; periodic case
UR - http://eudml.org/doc/11145
ER -
References
top- H. Added and S. Added. Equation of Langmuir turbulence and nonlinearSchrödinger equation : smoothness and approximation. J. Funct. Anal., Vol. 79, (1988), 183-210. Zbl0655.76044MR950090
- R. Belaouard, T. Colin, G. Gallice, C. Galusinski, Theorical and numerical study of a quasilinear Zakharov system describing Landau damping. M2AN vol. 40, No6, 961-986 (2007). Zbl1112.76090MR2297101
- C. Besse. Schéma de relaxation pour l’équation de Schrödinger non linéaire et les systèmes de Davey et Stewartson. C.R. Acad. Sci. Paris. Sér. I Math., Vol. 326, (1998), 1427-1432. Zbl0911.65072
- B. Bidégaray. On a nonlocal Zakharov equation. Nonlinear Anal., Vol. 25 (3), (1995), 247-278. Zbl0830.35123MR1336525
- M. Colin, T. Colin. On a quasilinear Zakharov System describing laser-plasma interactions. Differential and Integral Equations, 17 (2004), no. 3-4, 297–330. Zbl1174.35528MR2037980
- M. Colin and T. Colin, A numerical model for the Raman Amplification for laser-plasma interaction. Journal of Computational and Applied Math. 193 (2006), no. 2, 535–562. Zbl1092.35101MR2229560
- M. Colin, T. Colin. Multidimensional Raman instability. Preprint 2007. Zbl1121.74367
- T. Colin, On the Cauchy problem for a nonlocal, nonlinear Schrödinger equation occuring in plasma Physics, Differential and Integral Equations, vol 6, Number 6, pp. 1431-1450, November 1993. Zbl0780.35104MR1235204
- T. Colin, On the standing waves solutions to a nonlocal, nonlinear Schrödinger equation occuring in plasma Physics, Physica D, 64, pp. 215-236, 1993. Zbl0780.35105MR1214553
- T. Colin, G. Métivier, Instabilities in Zakharov equations for laser propagation in a plasma, in Phase space analysis of PDEs, A. Bove, F. Colombini, D. Del Santo Ed., Progress in Nonlinear Differential equations and their Applications 69, Birkhäuser, 2006. Zbl1133.35303MR2263207
- Davey A. and Stewartson K. (1974), On three-dimensional packets of surface waves, Proc. R. Soc. Lond. A 338, pp. 101-10. Zbl0282.76008MR349126
- J-L. Delcroix and A. Bers. “Physique des plasmas 1, 2”. Inter Editions-Editions du CNRS, (1994).
- J. Ginibre, Y. Tsutsumi and G. Velo. On the Cauchy problem for the Zakharov system. J. Funct. Anal., Vol. 151, (1997), 384-436. Zbl0894.35108MR1491547
- L. Glangetas and F. Merle. Existence of self-similar blow-up solutions for Zakharov equation in dimension two. I. Comm. Math. Phys., Vol. 160 (1), (1994), 173-215. Zbl0808.35137MR1262194
- L. Glangetas and F. Merle. Concentration properties of blow up solutions and instability results for Zakharov equation in dimension two. II Comm. Math. Phys., Vol. 160 (2), (1994), 349-389. Zbl0808.35138MR1262202
- R.T. Glassey. Convergence of an energy-preserving scheme for the Zakharov equation in one space dimension. Math. of Comput. Vol. 58, Number 197, (1992), 83-102. Zbl0746.65066MR1106968
- C.E. Kenig, G. Ponce and L. Vega. Smoothing effects and local existence theory for the generalized nonlinear Schrödinger equations. Invent. Math., Vol. 134 (3), (1998), 489-545. Zbl0928.35158MR1660933
- P. Linares, G. Ponce, J.-C. Saut, On a degenerate Zakharov system, Bull. Braz. Math. Soc. (N.S.) 36, no. 1, 1–23, (2005). Zbl1070.35087MR2132828
- G. Métivier, Space Propagation of Instabilities in Zakharov Equations, preprint 2007. Zbl1143.78355
- T. Ozawa and Y. Tsutsumi. Existence and smoothing effect of solution for the Zakharov equations. Publ. Res. Inst. Math. Sci, Vol. 28 (3), (1992), 329-361. Zbl0842.35116MR1184829
- G. Riazuelo. Etude théorique et numérique de l’influence du lissage optique sur la filamentation des faisceaux lasers dans les plasmas sous-critiques de fusion inertielle. Thèse de l’Université Paris XI.
- D.A. Russel, D.F. Dubois and H.A. Rose. Nonlinear saturation of simulated Raman scattering in laser hot spots. Physics of Plasmas, Vol. 6 (4), (1999), 1294-1317.
- S. Schochet and M. Weinstein. The nonlinear Schrödinger limit of the Zakharov equations governing Langmuir turbulence. Comm. Math. Phys., Vol. 106, (1986), 569-580. Zbl0639.76054MR860310
- C. Sulem and P-L. Sulem. “The nonlinear Schrödinger Equation. Self-Focusing and Wave Collapse.” Applied Mathematical Sciences 139, Springer, (1999). Zbl0928.35157
- C. Sulem and P-L. Sulem. Quelques résultats de régularité pour les équations de la turbulence de Langmuir. C. R. Acad. Sci. Paris Sér. A-B, Vol. 289 (3), (1979), 173-176. Zbl0431.35077MR552204
- B. Texier. Derivation of the Zakharov equations. Archive for Rational Mechanics and Analysis 184 (2007), no.1, 121-183. Zbl05146096MR2289864
- V.E. Zakharov, S.L. Musher and A.M. Rubenchik. Hamiltonian approach to the description of nonlinear plasma phenomena. Phys. Reports, Vol. 129, (1985), 285-366. MR824169
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.