Théorie spectrale de certains opérateurs de Schrödinger avec potentiel coulombien
Séminaire Équations aux dérivées partielles (Polytechnique) (1973-1974)
- page 1-10
Access Full Article
topHow to cite
topReferences
top- [1] F. Rellich: Uber das asymptotische Verhalten der Lösungen von Δu + λu = 0 in unendlichen Gebieten Jber Deutsch. Math Verein.53 (1943) 57-65. Zbl0028.16401
- [2] T. Kato: Growth properties of solutions of the reduced wave equations with a variable coefficient. Comm. Pure App. Math.12 (1959) 403-425. Zbl0091.09502MR108633
- [3] S. Agmon: Lower bounds for solutions of Schrödinger equation. Journ. Anal. Jerusalem23 (1970) 1-25. Zbl0211.40703MR276624
- [4] J. Dollard: Asymptotic convergence and the coulomb interactionJ. M. P.5 (1964) 729-738. MR163620
- [5] V.S. Buslaeev et V.B. Matveev: Wave operators for the scattering equation with a slowly decreasing potential, Theo. Math. Phys.2 (1970) 266-274.
- [6] P. Alshom et T. Kato: Scattering with long range potentials, Preprint 1971. Zbl0263.47008
- [7] S.T. Kuroda: On the existence and the unitarity property of the scattering operator, Nuovo Cimento12, 431-454 (1959). Zbl0084.44801
- [8] N. Schenk et D. Thoe: Eigenfunction expansion and scattering theory for perturbation of - Δ, J. M. A. A.36-2 (1971) 313-351. Zbl0249.47004
- [9] Schechter: Spectra of partial differential operators, Noth-Holland (1971). Zbl0225.35001
- [10] T. Ikebé: Scattering for the SchrHdinger operator in an exterior domain, J. Math. Kyoto Univ. (1967) 93-112. Zbl0153.42503MR247298