Unique local existence of solution in low regularity space of the Cauchy problem for the mKdV equation with periodic boundary condition

Kenji Nakanishi[1]; Hideo Takaoka[2]; Yoshio Tsutsumi[1]

  • [1] Department of Mathematics, Kyoto University, Kyoto 606-8502, Japan
  • [2] Department of Mathematics, Faculty of Science, Kobe University, Kobe 657-8501, Japan

Séminaire Équations aux dérivées partielles (2007-2008)

  • Volume: 2007-2008, page 1-5

How to cite

top

Nakanishi, Kenji, Takaoka, Hideo, and Tsutsumi, Yoshio. "Unique local existence of solution in low regularity space of the Cauchy problem for the mKdV equation with periodic boundary condition." Séminaire Équations aux dérivées partielles 2007-2008 (2007-2008): 1-5. <http://eudml.org/doc/11173>.

@article{Nakanishi2007-2008,
affiliation = {Department of Mathematics, Kyoto University, Kyoto 606-8502, Japan; Department of Mathematics, Faculty of Science, Kobe University, Kobe 657-8501, Japan; Department of Mathematics, Kyoto University, Kyoto 606-8502, Japan},
author = {Nakanishi, Kenji, Takaoka, Hideo, Tsutsumi, Yoshio},
journal = {Séminaire Équations aux dérivées partielles},
keywords = {modified Korteweg-de Vries equation; one-dimensional torus; Cauchy problem},
language = {eng},
pages = {1-5},
publisher = {Centre de mathématiques Laurent Schwartz, École polytechnique},
title = {Unique local existence of solution in low regularity space of the Cauchy problem for the mKdV equation with periodic boundary condition},
url = {http://eudml.org/doc/11173},
volume = {2007-2008},
year = {2007-2008},
}

TY - JOUR
AU - Nakanishi, Kenji
AU - Takaoka, Hideo
AU - Tsutsumi, Yoshio
TI - Unique local existence of solution in low regularity space of the Cauchy problem for the mKdV equation with periodic boundary condition
JO - Séminaire Équations aux dérivées partielles
PY - 2007-2008
PB - Centre de mathématiques Laurent Schwartz, École polytechnique
VL - 2007-2008
SP - 1
EP - 5
LA - eng
KW - modified Korteweg-de Vries equation; one-dimensional torus; Cauchy problem
UR - http://eudml.org/doc/11173
ER -

References

top
  1. J. Bourgain, Fourier transform restriction phenomena for certain lattice subsets and applications to nonlinear evolution equations, I, II, Geom. Funct. Anal. 3 (1993), 107–156, 209–262. Zbl0787.35098MR1215780
  2. —, Periodic Korteweg de Vries equation with measures as initial data, Sel. Math., New Ser. 3 (1997), 115–159. Zbl0891.35138MR1466164
  3. M. Christ, J. Colliander, and T. Tao, Asymptotics, frequency modulation, and low regularity ill-posedness for canonical defocusing equations, Amer. J. Math. 125 (2003), 1235–1293. Zbl1048.35101MR2018661
  4. J. Colliander, M. Keel, G. Staffilani, H. Takaoka, and T. Tao, Sharp global well-posedness of KdV and modified KdV on the and 𝕋 , J. Amer. Math. Soc 16 (2003), 705–749. Zbl1025.35025MR1969209
  5. A. Grünrock, An improved local wellposedness result for the modified KdV-equation, Int. Math. Res. Not. 61 (2004), 3287–3308. Zbl1072.35161MR2096258
  6. T. Kappeler and P. Topalov, Global well-posedness of mKdV in L 2 ( 𝕋 , ) , Comm. Partial Differential Equations 30 (2005), 435–449. Zbl1080.35119MR2131061
  7. —, Global well-posedness of KdV in H - 1 ( 𝕋 , ) , Duke Math. J. 135 (2006), 327–360. Zbl1106.35081
  8. C. E. Kenig, G. Ponce, and L. Vega, A bilinear estimate with applications to the KdV equation, J. Amer. Math. Soc. 9 (1996), 573–603. Zbl0848.35114MR1329387
  9. —, On the ill-posedness of some canonical dispersive equations, Duke Math. J. 106 (2001), 617–633. Zbl1034.35145MR1813239
  10. S. Klainerman and M. Machedon, Space time estimates for null forms and the local existence theorem, Comm. Pure Appl. Math. 46 (1993), 1221–1268. Zbl0803.35095MR1231427
  11. H. Koch and N. Tzvetkov, Nonlinear wave interactions for the Benjamin-Ono equation, Int. Math. Res. Not. 30 (2005), 1833–1847. Zbl1156.35460MR2172940
  12. H. Takaoka and Y. Tsutsumi, Well-posedness of the Cauchy problem for the modified KdV equation with periodic boundary condition, Internat. Math. Res. Notices 56 (2004), 3009–3040. Zbl1154.35442MR2097834
  13. T. Tao, Global well-posedness of the Benjamin-Ono equation in H 1 ( ) , J. Hyperbolic Differ. Equ. 1 (2004), 27–49. Zbl1055.35104MR2052470

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.