Hypoelliptic operators with characteristic variety of codimension two and the wave equation

R. B. Melrose

Séminaire Équations aux dérivées partielles (Polytechnique) (1979-1980)

  • page 1-12

How to cite

top

Melrose, R. B.. "Hypoelliptic operators with characteristic variety of codimension two and the wave equation." Séminaire Équations aux dérivées partielles (Polytechnique) (1979-1980): 1-12. <http://eudml.org/doc/111745>.

@article{Melrose1979-1980,
author = {Melrose, R. B.},
journal = {Séminaire Équations aux dérivées partielles (Polytechnique)},
keywords = {characteristic variety; propagation of singularities; hypoelliptic operator; Hermite transformation},
language = {eng},
pages = {1-12},
publisher = {Ecole Polytechnique, Centre de Mathématiques},
title = {Hypoelliptic operators with characteristic variety of codimension two and the wave equation},
url = {http://eudml.org/doc/111745},
year = {1979-1980},
}

TY - JOUR
AU - Melrose, R. B.
TI - Hypoelliptic operators with characteristic variety of codimension two and the wave equation
JO - Séminaire Équations aux dérivées partielles (Polytechnique)
PY - 1979-1980
PB - Ecole Polytechnique, Centre de Mathématiques
SP - 1
EP - 12
LA - eng
KW - characteristic variety; propagation of singularities; hypoelliptic operator; Hermite transformation
UR - http://eudml.org/doc/111745
ER -

References

top
  1. [1] L. Boutet de Monvel: Hypoelliptic operators with double characteristics and related pseudodifferential operators. Comm. Pure Appl.27 (1974), 585-639. Zbl0294.35020MR370271
  2. [2] C. Caratheodory: Variationsrechnung und partielle Differentialgleichnugen. Teubner, Berlin1935. Zbl0011.35603JFM61.0547.01
  3. [3] J. Chazarain: Formule de Poisson pour les variétés riemanniennes. Invent. Math.24 (1974), 65-82. Zbl0281.35028MR343320
  4. [4] J.J. Duistermaat and V.W. Guillemin: The spectrum of positive elliptic operators and closed bicharacteristics. Invent. Math.29 (1975), 39-79. Zbl0307.35071MR405514
  5. [6] L. Hörmander: The spectral function of an elliptic operator. Acta Math.121 (1968), 193-218. Zbl0164.13201MR609014
  6. [7] L. Hörmander: The Cauchy problem for differential equations with double characteristics. J. D'Analyse Math.32 (1977), 118-196. Zbl0367.35054MR492751
  7. [8] V. Ia Ivrii and V.M. Petkov: Necessary conditions for the correctness of the Cauchy problem for non-strictly hyperbolic equations. Uspehi Mat. Nauk.29 (1974), 3-70. Zbl0312.35049MR427843
  8. [9] P.D. Lax: Asymptotic solutions of oscillatory initial value problems. Duke Math. J.24 (1957), 627-646. Zbl0083.31801MR97628
  9. [10] A. Menikoff and J. Sjöstrand: On the eigenvalues of a class of hypoelliptic operators. Math. Ann.235 (1978), 55-85. The eigenvalues of hypoelliptic operators III - the non-semibounded case. J. d'Analyse Math.35 (1979), 123-150, Zbl0436.35065MR481627
  10. [11] R.B. Melrose: The wave equation for a hypoelliptic operator with symplectic characteristics of codimension two. In preparation. Zbl0599.35139
  11. [12] B. Lascar: Propagation des singularités pour des équations hyperboliques à caractéristique de multiplicité au plus double et singularités masloviennes. Zbl0506.35067
  12. [13] B. Helffer: Sur l'hypoellipticité des opérateurs pseudodifférentiels à caractéristiques multiples (perte de 3/2 dérivées). Math. Ann.217 (1975) 165-188. 
  13. [14] A. Grigis: Propagation des singularités pour des opérateurs pseudodifférentiels à caractéristiques doubles (to appear). Zbl0494.35088MR546643

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.