Finite difference approximations for partial differential equations with rapidly oscillating coefficients

M. Avellaneda; Th. Y. Hou; G. C. Papanicolaou

ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique (1991)

  • Volume: 25, Issue: 6, page 693-710
  • ISSN: 0764-583X

How to cite

top

Avellaneda, M., Hou, Th. Y., and Papanicolaou, G. C.. "Finite difference approximations for partial differential equations with rapidly oscillating coefficients." ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique 25.6 (1991): 693-710. <http://eudml.org/doc/193645>.

@article{Avellaneda1991,
author = {Avellaneda, M., Hou, Th. Y., Papanicolaou, G. C.},
journal = {ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique},
keywords = {finite difference; rapidly oscillating coefficients; hyperbolic problems; consistency},
language = {eng},
number = {6},
pages = {693-710},
publisher = {Dunod},
title = {Finite difference approximations for partial differential equations with rapidly oscillating coefficients},
url = {http://eudml.org/doc/193645},
volume = {25},
year = {1991},
}

TY - JOUR
AU - Avellaneda, M.
AU - Hou, Th. Y.
AU - Papanicolaou, G. C.
TI - Finite difference approximations for partial differential equations with rapidly oscillating coefficients
JO - ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique
PY - 1991
PB - Dunod
VL - 25
IS - 6
SP - 693
EP - 710
LA - eng
KW - finite difference; rapidly oscillating coefficients; hyperbolic problems; consistency
UR - http://eudml.org/doc/193645
ER -

References

top
  1. [1] E. DEGIORGI and S. SPAGNOLO, Sulla convergenza degli integrali dell'energia per operatori ellitici del secundo ordine, Boll. I.M.I., 8, 391-411, 1973. Zbl0274.35002MR348255
  2. [2] I. BABUSKA, Solution of interface problems by homogenization I, II, III, SIAM J. Math. Analysis, 7, 603-345, 635-645, and 8, 923-937, 1976. Zbl0343.35023MR509273
  3. [3] L. TARTAR, Cours Peccot, Paris 1977. 
  4. [4] A. BENSOUSSAN, J. L. LIONS and G. PAPANICOLAOU, Asymptotic Analysis for Periodic Structures, North Holland, Amsterdam, 1978. Zbl0404.35001MR503330
  5. [5] E. SANCHEZ-PALENCIA, Nonhomogeneous Media and Vibration Theory, Springer, 1980. Zbl0432.70002MR578345
  6. [6] G. PAPANICOLAOU and S.R.S. VARADHAN, Boundary value problems with rapidly oscillating random coefficients, at Proceedings of Conference on Random Fields, Esztergom, Hungary, 1979, published in Séria Colloquia Mathematica Societatis Janos Bolyai, 27, 835-873, North Holland, 1981. Zbl0499.60059MR712714
  7. [7] V. V. ZHIKOV, S. M. KOZLOV, O. OLEINIK and KHA T'EN NGOAN, AVERAGING and G-convergence of differential operators, Uspekhi Mat. Nauk. 34, 65-133, 1979. Zbl0421.35076MR562800
  8. [8] N. BAHVALOV and G. PANACHENKO, Average of processes in periodic media, Nauka, Moscow, 1984. Zbl0607.73009
  9. [9] S. KOZLOV, The method of averaging and walks in inhomogeneous environments, Uspekhi Mat. Nauk 40, 61-120, 1985. Zbl0592.60054MR786087
  10. [10] G. PAPANICOLAOU, Macroscopic properties of composites, bubbly fluids, suspensions and related problems, in Les méthodes de Fhomogénéization : Théorie et applications en physique, CEA-EDF-INRIA séries 57, 229-318, Eyrolles, Paris, 1985. MR844872
  11. [11] J. L. LIONS, Remarques sur les problèmes d'homogénéization dans les milieux à structure périodique et sur quelques problèmes raides, in Les méthodes de l'homogénéization : Théorie et applications en physique, CEA-EDF-INRIA séries 57, 129-228, Eyrolles, Paris, 1985. MR844871
  12. [12] F. MURAT and L. TARTAR, Calcul des variations et homogénéization, in Les méthodes de l'homogénéization : Théorie et applications en physique, CEA-EDF-INRIA séries 57, 319-370, Eyrolles, Paris, 1985. MR844873
  13. [13] B. ENGQUIST, Computation of oscillatory solutions to hyperbolic differential equations, to appear. Also in Lecture Notes in Math. 1270, 10-22, Springer, 1987. Zbl0626.65085MR910101
  14. [14] B. ENGQUIST and T. HOU, Particle method approximation of oscillatory solutions to hyperbolic differential equations, SIAM J. Numer. Anal. 26, 289-319, 1989. Zbl0675.65093MR987391
  15. [15] B. ENGQUIST and T. HOU, Computation of oscillatory solutions to hyperbolic differential equations using particle methods, Lecture Notes in Math., 1360, 68-82, 1988. Zbl0653.76049MR979562
  16. [16] L. TARTAR, Solutions oscillantes des équations de Carleman, Séminaire Goulaouic-Meyer-Schwartz, 1981. Zbl0481.35010MR657995
  17. [17] D. MCLAUGHLIN, G. PAPANICOLAOU and L. TARTAR, Weak limits of semilinear hyperbolic equations with oscillating data, Springer Lecture Notes in Phys., 230, 277-289, 1985. Zbl0588.76137
  18. [18] R. KUHNEMANN, The diffusion limit for reversible jump processes on Zd with ergodic random bond conductivities, Comm. Math. Phys., 90, 27-68, 1983. Zbl0523.60097MR714611
  19. [19] R. FIGARI, E. ORLANDI and G. PAPANICOLAOU, Diffusive behavior of a random walk in a random medium, in « Stochastic Analysis » by K. Ito, 105-120, North Holland, 1984. Zbl0549.60075MR780754
  20. [20] V. ARNOLD and A. AVEZ, Ergodic Problems of Classical Mechanics, Benjamin, New York, 1968. Zbl0715.70004MR232910
  21. [21] K. GOLDEN and G. PAPANICOLAOU, Bounds for effective parameters of heterogeneous media by analytic continuation, Comm. Math. Phys., 90, 473-491, 1983. MR719428

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.