La distribution des pôles de la matrice de diffusion

V. M. Petkov

Séminaire Équations aux dérivées partielles (Polytechnique) (1982-1983)

  • page 1-8

How to cite

top

Petkov, V. M.. "La distribution des pôles de la matrice de diffusion." Séminaire Équations aux dérivées partielles (Polytechnique) (1982-1983): 1-8. <http://eudml.org/doc/111838>.

@article{Petkov1982-1983,
author = {Petkov, V. M.},
journal = {Séminaire Équations aux dérivées partielles (Polytechnique)},
keywords = {captive obstacles},
language = {fre},
pages = {1-8},
publisher = {Ecole Polytechnique, Centre de Mathématiques},
title = {La distribution des pôles de la matrice de diffusion},
url = {http://eudml.org/doc/111838},
year = {1982-1983},
}

TY - JOUR
AU - Petkov, V. M.
TI - La distribution des pôles de la matrice de diffusion
JO - Séminaire Équations aux dérivées partielles (Polytechnique)
PY - 1982-1983
PB - Ecole Polytechnique, Centre de Mathématiques
SP - 1
EP - 8
LA - fre
KW - captive obstacles
UR - http://eudml.org/doc/111838
ER -

References

top
  1. [1] C. Bardos, J.C. Guillot et J. Ralston: La relation de Poisson pour l'équation des ondes dans un ouvert non borné. Application à la théorie de la diffusion, Comm. in Partial Diff. Eq., 7, (1982), p. 905-958. Zbl0496.35067MR668585
  2. [2] V. Guillemin et R. Melrose: The Poisson summation formula for manifolds with boundary. Advances in Math., 32, (1979), p. 204-232. Zbl0421.35082MR539531
  3. [3] M. Ikawa: On the poles of the scattering matrix for two strictly convex obstacles. J. Math. Kyoto Univ. (to appear). Zbl0561.35060MR692733
  4. [4] M. Ikawa: On the distribution of the poles of the scattering matrix for two strictly convex obstacles, preprint. Zbl0542.35057MR719973
  5. [5] V. Ivrii: Second term of the spectral symptotic expansion of the Laplace-Beltrami operator on manifolds with boundary. Funct. Analiz i Ego Pril., 14, N° 2 (1980), p. 25-34. Zbl0453.35068MR575202
  6. [6] P. Lax and R. Phillips: Scattering theory, Academic Press, 1967. Zbl0186.16301MR217440
  7. [7] P. Lax and R. Phillips: A logarithmic bound on the location of the poles of the scattering matrix, Arch. Rat. Mech. and Anal., 40, (1971), p. 268-280. Zbl0216.13002MR296534
  8. [8] R. Melrose and J. Sjöstrand: Singularities in boundary value problems. Comm. Pure Appl. Math., 31, (1978), p. 593-617 and 35, (1982), p.129-168. Zbl0368.35020
  9. [9] R. Melrose: Polynomial bound on the number of scattering poles. Preprint. Zbl0535.35067MR724031
  10. [10] V. Petkov and G. Popov: Asymptotic behaviour of the scattering phase for non-trapping obstacles. Ann. Inst. Fourier, 32, (1982), (to appear). Zbl0476.35014MR688023
  11. [11] V. Petkov: Note on the distribution of poles of the scattering matrix. J. Math. Anal. Appl. (to appear). Zbl0562.35065MR748591
  12. [12] P. Vogel: Communication personnelle. 

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.