Bounds on Schrödinger operators and generalized Sobolev type inequalities

Elliot H. Lieb

Séminaire Équations aux dérivées partielles (Polytechnique) (1985-1986)

  • page 1-8

How to cite

top

Lieb, Elliot H.. "Bounds on Schrödinger operators and generalized Sobolev type inequalities." Séminaire Équations aux dérivées partielles (Polytechnique) (1985-1986): 1-8. <http://eudml.org/doc/111899>.

@article{Lieb1985-1986,
author = {Lieb, Elliot H.},
journal = {Séminaire Équations aux dérivées partielles (Polytechnique)},
keywords = {Sobolev type inequalities; estimate; negative eigenvalues; Coulomb systems; stability of atoms; magnetic fields},
language = {eng},
pages = {1-8},
publisher = {Ecole Polytechnique, Centre de Mathématiques},
title = {Bounds on Schrödinger operators and generalized Sobolev type inequalities},
url = {http://eudml.org/doc/111899},
year = {1985-1986},
}

TY - JOUR
AU - Lieb, Elliot H.
TI - Bounds on Schrödinger operators and generalized Sobolev type inequalities
JO - Séminaire Équations aux dérivées partielles (Polytechnique)
PY - 1985-1986
PB - Ecole Polytechnique, Centre de Mathématiques
SP - 1
EP - 8
LA - eng
KW - Sobolev type inequalities; estimate; negative eigenvalues; Coulomb systems; stability of atoms; magnetic fields
UR - http://eudml.org/doc/111899
ER -

References

top
  1. [1] M. Aizenman and E.H. Lieb, On semiclassical bounds for eigenvalues of Schrödinger operators, Phys. Lett.66A, 427-429 (1978). MR598768
  2. [2] M. Cwikel, Weak type estimates for singular values and the number of bound states of Schrödinger operators, Ann. Math.106, 93-100 (1977). Zbl0362.47006MR473576
  3. [3] I. Daubechies, Commun. Math. Phys.90, 511 (1983) Zbl0946.81521MR719431
  4. [4] E.H. Lieb, The number of bound states of one-body Schrödinger operators and the Weyl problem, A.M.S. Proc. Symp. in Pure Math. 36, 241-251 (1980). The result were announced in Bull. Ann. Math. Soc.82, 751-753 (1976). Zbl0445.58029MR573436
  5. [5] H.E. Lieb, An Lp bound for the Riesz and Bessel potentials of orthonormal functions, J. Funct. Anal.51, 159-165 (1983). Zbl0517.46025MR701053
  6. [6] E.H. Lieb, On characteristic exponents in turbulence, Commun. Math. Phys.92, 413-480 (1984). Zbl0598.76054MR736404
  7. [7] E.H. Lieb and M. Loss, Stability of Coulomb systems with magnetic fields: II. The many-electron atom and the one-electron molecule, Commun. Math. Phys.104, 271-282 (1986). Zbl0607.35082MR836004
  8. [8] E.H. Lieb and W.E. Thirring, Bounds for the kinetic energy of fermions which proves the stability of matter,Phys. Rev. Lett.35, 687-689 (1975). Errata 35, 1116 (1975). 
  9. [9] E.H. Lieb and W.E. Thirring, "Inequalities for the moments of the eigenvalues of the Schrödinger equation and their relation to Sobolev inequalities in studies in Mathematical Physics" (E. Lieb, B. Simon, A. Wightman eds.) Princeton University Press, 1976. Zbl0342.35044
  10. [10] E.H. Lieb and W.E. Thirring, Gravitational collapse in quantum mechanics with relativistic kinetic energy, Ann. of Phys. (NY) 155, 494-512 (1984). MR753345
  11. [11] G.V. Rosenbljum, Distribution of the discrete spectrum of singular differential operators. Dokl. Aka. Nauk SSSR202, 1012-1015 (1972). (MR 45 # 4216). The details are given in Izv. Vyss. Ucebn. Zaved. Matem. 164 75-86 (1976). [English trans. Sov. Math. (Iz VUZ) 20, 63-71 (1976).] Zbl0249.35069MR295148

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.