Riesz means of bounded states and semi-classical limit connected with a Lieb-Thirring conjecture. II

B. Helffer; D. Robert

Annales de l'I.H.P. Physique théorique (1990)

  • Volume: 53, Issue: 2, page 139-147
  • ISSN: 0246-0211

How to cite

top

Helffer, B., and Robert, D.. "Riesz means of bounded states and semi-classical limit connected with a Lieb-Thirring conjecture. II." Annales de l'I.H.P. Physique théorique 53.2 (1990): 139-147. <http://eudml.org/doc/76498>.

@article{Helffer1990,
author = {Helffer, B., Robert, D.},
journal = {Annales de l'I.H.P. Physique théorique},
keywords = {Lieb-Thirring's conjectures; negative eigenvalues; Riesz mean},
language = {eng},
number = {2},
pages = {139-147},
publisher = {Gauthier-Villars},
title = {Riesz means of bounded states and semi-classical limit connected with a Lieb-Thirring conjecture. II},
url = {http://eudml.org/doc/76498},
volume = {53},
year = {1990},
}

TY - JOUR
AU - Helffer, B.
AU - Robert, D.
TI - Riesz means of bounded states and semi-classical limit connected with a Lieb-Thirring conjecture. II
JO - Annales de l'I.H.P. Physique théorique
PY - 1990
PB - Gauthier-Villars
VL - 53
IS - 2
SP - 139
EP - 147
LA - eng
KW - Lieb-Thirring's conjectures; negative eigenvalues; Riesz mean
UR - http://eudml.org/doc/76498
ER -

References

top
  1. [AI-LI] M. Aizenmann and E. Lieb, On semi-Classical Bounds for Eigenvalues of Schrödinger Operators, Phys. Lett., Vol. 66A, 1978, pp. 427-429. MR598768
  2. [DI] J. Dieudonné, Calcul infinitésimal, Hermann, 1980. Zbl0497.26004MR226971
  3. [HE-RO] B. Helffer and D. Robert, Calcul fonctionnel par la transformée de Mellin et applications, J.F.A., Vol. 53, n° 3, Oct. 1983. 
  4. [HE-RO]2 Riesz Means of Bound States and Semi Classical Limit Connected with a Lieb-Thirring's Conjecture-I, J. Asymp. Anal. (to appear). Zbl0717.35062
  5. [HE-SJ] B. Helffer and J. Sjöstrand, Diamagnetism and de Haas-van Alphen Effect, Ann. Inst. Henri Poincaré, Vol. 52, n° 4, 1990, pp. 303-375. Zbl0715.35070MR1062904
  6. [HO] L. Hörmander, On the Riesz Means of Spectral Functions and Eigenfunction Expansions for Elliptic Differential Operators, Yeshiva University Conference, Nov. 1966. 
  7. [LA] L.D. Landau, Diamagnetismus der Metalle, Z. Phys., Vol. 64, 1930, p. 629. Zbl56.1318.10JFM56.1318.10
  8. [LI]1 E.H. Lieb, The Number of Bound States of One-body Schrödinger Operators and the Weyl Problem, A.M.S. Proc. Symp. Pure Math., Vol. 36, 1980, pp.241-251. Zbl0445.58029MR573436
  9. [LI]2 E.H. Lieb, Bounds on Schrödinger Operators and Generalized Sobolev Type Inequalities, Séminaire E.D.P., École Polytechnique, 1985-1986. Zbl0621.35030MR874582
  10. [LI-TH] E.H. Lieb and W.E. Thirring, Inequalities for the Moments of the Eigenvalues of the Schrödinger Equation and Their Relation to Sobolev Inequalities, Studies in Mathematical Physics, E. LIEB, B. SIMON and A. WIGHTMAN Eds., Princeton University Press, 1976. Zbl0342.35044
  11. [PE] R. Peierls, Zur Theory des Diamagnetismus vonLeitungelectronen Z. Phys., Vol. 80, 1983, pp.763-791. Zbl0006.19204JFM59.1576.09
  12. [SO-WI] E.H. Sondheimer and A.H. Wilson, The Diamagnetism of Free Electrons, Proc. R. Soc., Vol. A210, 1951, p. 173. Zbl0044.45201

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.