# A Two-Particle Quantum System with Zero-Range Interaction

Michele Correggi^{[1]}

- [1] CIRM, Fondazione Bruno Kessler Via Sommarive 14 38100 Trento Italy

Séminaire Équations aux dérivées partielles (2008-2009)

- Volume: 2008-2009, page 1-17

## Access Full Article

top## Abstract

top## How to cite

topCorreggi, Michele. "A Two-Particle Quantum System with Zero-Range Interaction." Séminaire Équations aux dérivées partielles 2008-2009 (2008-2009): 1-17. <http://eudml.org/doc/11191>.

@article{Correggi2008-2009,

abstract = {We study a two-particle quantum system given by a test particle interacting in three dimensions with a harmonic oscillator through a zero-range potential. We give a rigorous meaning to the Schrödinger operator associated with the system by applying the theory of quadratic forms and defining suitable families of self-adjoint operators. Finally we fully characterize the spectral properties of such operators.},

affiliation = {CIRM, Fondazione Bruno Kessler Via Sommarive 14 38100 Trento Italy},

author = {Correggi, Michele},

journal = {Séminaire Équations aux dérivées partielles},

keywords = {two-particle quantum system; Schrödinger operator; self-adjoint operators; spectral analysis},

language = {eng},

pages = {1-17},

publisher = {Centre de mathématiques Laurent Schwartz, École polytechnique},

title = {A Two-Particle Quantum System with Zero-Range Interaction},

url = {http://eudml.org/doc/11191},

volume = {2008-2009},

year = {2008-2009},

}

TY - JOUR

AU - Correggi, Michele

TI - A Two-Particle Quantum System with Zero-Range Interaction

JO - Séminaire Équations aux dérivées partielles

PY - 2008-2009

PB - Centre de mathématiques Laurent Schwartz, École polytechnique

VL - 2008-2009

SP - 1

EP - 17

AB - We study a two-particle quantum system given by a test particle interacting in three dimensions with a harmonic oscillator through a zero-range potential. We give a rigorous meaning to the Schrödinger operator associated with the system by applying the theory of quadratic forms and defining suitable families of self-adjoint operators. Finally we fully characterize the spectral properties of such operators.

LA - eng

KW - two-particle quantum system; Schrödinger operator; self-adjoint operators; spectral analysis

UR - http://eudml.org/doc/11191

ER -

## References

top- S. Albeverio, F. Gesztesy, R. Hogh-Krohn, H. Holden, Solvable Models in Quantum Mechanics, Springer-Verlag, New-York, 1988. Zbl0679.46057MR926273
- J. Bellandi, E.S. Caetano Neto, The Mehler Formula and the Green Function of Multidimensional Isotropic Harmonic Oscillator, J. Phys. A: Math Gen.9 (1976), 683-685. Zbl0322.35023MR413827
- F.A. Berezin, L.D. Faddeev, A Remark on Schrödinger Equation with a Singular Potential, Sov. Math. Dokl.2 (1961), 372-375. Zbl0117.06601
- M. Correggi, G. Dell’Antonio, D. Finco, Spectral Analysis of a Two Body Problem with Zero-range Perturbation, J. Funct. Anal.255 (2008), 502–531. Zbl1150.81004MR2419969
- G. Dell’Antonio, R. Figari, A. Teta, Hamiltonians for Systems of $N$ Particles Interacting through Point Interactions, Ann. Inst. H. Poincaré Phys. Théor.60 (1994), 253–290. Zbl0808.35113MR1281647
- G. Dell’Antonio, D. Finco, A. Teta, Singularly Perturbed Hamiltonians of a Quantum Reyleigh Gas Defined as Quadratic Forms, Pot. Anal.22 (2005), 229–261. Zbl1061.47067MR2134721
- E. Fermi, Sul Moto dei Neutroni nelle Sostanze Idrogenate, (in italian) Ricerca Scientifica7 (1936), 13-52. Zbl0015.09002
- P.R. Halmos, V.S. Sunder, Bounded Integral Operators on ${L}^{2}$ Spaces, Springer Verlag, New York, 1978. Zbl0389.47001MR517709
- R. Kronig, W.G. Penney, Quantum Mechanics of Electrons in Crystal Lattices, Proc. R. Soc. A130 (1931), 499-513. Zbl0001.10601
- A. Posilicano, Self-adjoint Extensions of Restrictions, Oper. Matrices2 (2008), 483–506. Zbl1175.47025MR2468877
- B. Simon, Trace Ideals and Their Applications, Mathematical Surveys and Monographs 120, American Mathematical Society, Providence, RI, 2005. Zbl1074.47001MR2154153
- M. Reed, B. Simon, Methods of Modern Mathematical Physics. Vol I: Functional Analysis, Academic Press, San Diego, 1972. Zbl0242.46001
- M. Reed, B. Simon, Methods of Modern Mathematical Physics. Vol III: Scattering Theory, Academic Press, San Diego, 1975. Zbl0308.47002
- M. Reed, B. Simon, Methods of Modern Mathematical Physics. Vol IV: Analysis of Operators, Academic Press, San Diego, 1978. Zbl0401.47001MR493422

## NotesEmbed ?

topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.