Superlinear elliptic equations

A. Bahri

Séminaire Équations aux dérivées partielles (Polytechnique) (1986-1987)

  • page 1-27

How to cite

top

Bahri, A.. "Superlinear elliptic equations." Séminaire Équations aux dérivées partielles (Polytechnique) (1986-1987): 1-27. <http://eudml.org/doc/111920>.

@article{Bahri1986-1987,
author = {Bahri, A.},
journal = {Séminaire Équations aux dérivées partielles (Polytechnique)},
keywords = {level sets; Morse index; homotopy; homology; superlinear; existence; infinitely many solutions; perturbation; critical points; variational formulation; algebraic geometry; algebraic topology},
language = {eng},
pages = {1-27},
publisher = {Ecole Polytechnique, Centre de Mathématiques},
title = {Superlinear elliptic equations},
url = {http://eudml.org/doc/111920},
year = {1986-1987},
}

TY - JOUR
AU - Bahri, A.
TI - Superlinear elliptic equations
JO - Séminaire Équations aux dérivées partielles (Polytechnique)
PY - 1986-1987
PB - Ecole Polytechnique, Centre de Mathématiques
SP - 1
EP - 27
LA - eng
KW - level sets; Morse index; homotopy; homology; superlinear; existence; infinitely many solutions; perturbation; critical points; variational formulation; algebraic geometry; algebraic topology
UR - http://eudml.org/doc/111920
ER -

References

top
  1. [1 H. Jacobowitz: Periodic solution of x+g(t,x) = 0 via the Poincaré-Birkhoff Theorem.Journal Diff. EquationsXX1976 p.37-52. Zbl0285.34028MR393673
  2. [2] P.H. Rabinowitz: Some aspects of non-linear eigenvalue problems. Rocky MountainMath. Journal1972. Zbl0255.47069
  3. [3] A. Ambrosetti, P.H. Rabinowitz: Dual variational methods in critical point theory and applications. J. Funct. Anal.14 (1973) 349. Zbl0273.49063MR370183
  4. [4] M.A. Krasnosels'kii: Topological methods in Non-linear Integral Equations. Mac MillanNew-York1964. Zbl0111.30303MR159197
  5. [5] A. Bahri, H. Berestycki: A parturbation method in critical point theory and applications. Trans. A.M.S.267, 1, 1981. Zbl0476.35030MR621969
  6. [6] A. Bahri, P.L. Lions: Morse index of some min-max critical points (to appear). Zbl0645.58013
  7. [7] A. Bahri: Topological results on a certain class of functionals and application. J. Funct. Anal.41 (1981) p.397-427. Zbl0499.35050MR619960
  8. [8] J. Milnor: Singular points of complex hypersurfaces. Princ. Univ. Press. 1968-161). Zbl0184.48405MR239612
  9. [9] G.E. Bredon: Introduction to compact transformation groupsAcademic Press1972. Pure and Applied Maths n°46. Zbl0246.57017MR413144
  10. [10] A. Bahri: Groupes d'homotopie des surfaces de niveau des fonctionnelles à gradient Fredholm Thèse d'EtatUniversité ParisVI1981. 
  11. [11] A. Bahri, H. Berestycki: Forced vibrations of superquadratic Hamiltonian systems. Acta Math.1523-4 (1984) p.143-197. Zbl0592.70027MR741053

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.