On strong globbal solutions of nonlinear hyperbolic equations

P. Brenner

Séminaire Équations aux dérivées partielles (Polytechnique) (1988-1989)

  • page 1-15

How to cite

top

Brenner, P.. "On strong globbal solutions of nonlinear hyperbolic equations." Séminaire Équations aux dérivées partielles (Polytechnique) (1988-1989): 1-15. <http://eudml.org/doc/111974>.

@article{Brenner1988-1989,
author = {Brenner, P.},
journal = {Séminaire Équations aux dérivées partielles (Polytechnique)},
language = {eng},
pages = {1-15},
publisher = {Ecole Polytechnique, Centre de Mathématiques},
title = {On strong globbal solutions of nonlinear hyperbolic equations},
url = {http://eudml.org/doc/111974},
year = {1988-1989},
}

TY - JOUR
AU - Brenner, P.
TI - On strong globbal solutions of nonlinear hyperbolic equations
JO - Séminaire Équations aux dérivées partielles (Polytechnique)
PY - 1988-1989
PB - Ecole Polytechnique, Centre de Mathématiques
SP - 1
EP - 15
LA - eng
UR - http://eudml.org/doc/111974
ER -

References

top
  1. 1 Brenner, P.: On the existence of Global smooth solutions for certain semilinear hyperbolic equations, Math.Z167, 99-135 (1979) Zbl0388.35048MR534820
  2. 2 Brenner P.: On space-time means and everywhere defined scattering operators for nonlinear Klein-Gordon equations, Math.Z186, 383-391 (1984) Zbl0524.35084MR744828
  3. 3 Brenner P.: Space-time means and non-linear Klein-Gordon equations, Research Report, Department of Mathematics, Chalmers Univ. of Technology and the University of Göteborg, 1985-19. 
  4. 4 Brenner, P.: Wahl, W.von: Global classical solutions of nonlinear wave equations, Math.Z176, 87-121 (1981). Zbl0457.35059MR606174
  5. 5 Ginibre, J. and Velo, G.: The Global Cauchy problem for the nonlinear Klein-Gordon equation, Math.Z189, 487-5-5 (1985). Zbl0549.35108MR786279
  6. 6 Heinz, E., Wahl, W.: Zu einem Satz von F.E. Browder über nichtlineare Wellengleichungen, Math.Z.141, 33-45 (1975). Zbl0282.35068MR365257
  7. 7 Marshall, B.: Mixed norm estimates for the Klein-Gordon equation. In Proceedings of a Conference of Harmonic Analysis (Chicago1981). Zbl0516.35047
  8. 8 Strichartz, R.S.: Restrictions of Fourier transforms to quadratic surfaces and decay of solutions of wave equations, Duke Math. J.44, 705/714 (1977). Zbl0372.35001MR512086
  9. 9 Segal, I.: Space-time decay for solutions of wave equations, Advances in Math.22, 302-311 (1976). Zbl0344.35058MR492892

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.