Problèmes de contrôle pour des équations dispersives unidimensionnelles

Olivier Glass[1]

  • [1] Ceremade Université Paris-Dauphine Place du Maréchal de Lattre de Tassigny 75775 Paris Cedex 16 France

Séminaire Équations aux dérivées partielles (2008-2009)

  • Volume: 2008-2009, page 1-15

How to cite

top

Glass, Olivier. "Problèmes de contrôle pour des équations dispersives unidimensionnelles." Séminaire Équations aux dérivées partielles 2008-2009 (2008-2009): 1-15. <http://eudml.org/doc/11199>.

@article{Glass2008-2009,
affiliation = {Ceremade Université Paris-Dauphine Place du Maréchal de Lattre de Tassigny 75775 Paris Cedex 16 France},
author = {Glass, Olivier},
journal = {Séminaire Équations aux dérivées partielles},
keywords = {dispersive equations; exact controllability; boundary control},
language = {fre},
pages = {1-15},
publisher = {Centre de mathématiques Laurent Schwartz, École polytechnique},
title = {Problèmes de contrôle pour des équations dispersives unidimensionnelles},
url = {http://eudml.org/doc/11199},
volume = {2008-2009},
year = {2008-2009},
}

TY - JOUR
AU - Glass, Olivier
TI - Problèmes de contrôle pour des équations dispersives unidimensionnelles
JO - Séminaire Équations aux dérivées partielles
PY - 2008-2009
PB - Centre de mathématiques Laurent Schwartz, École polytechnique
VL - 2008-2009
SP - 1
EP - 15
LA - fre
KW - dispersive equations; exact controllability; boundary control
UR - http://eudml.org/doc/11199
ER -

References

top
  1. Banks S. P.,Exact boundary controllability and optimal control for a generalised Korteweg de Vries equation, Nonlinear Anal. 47 (2001), no. 8, pp. 5537–5546. Zbl1042.93503MR1974759
  2. Bona J., Sun S. M., Zhang B.-Y., A nonhomogeneous boundary-value problem for the Korteweg-de Vries equation posed on a finite domain, Comm. Partial Differential Equations 28 (2003), no. 7-8, pp. 1391–1436. Zbl1057.35049MR1998942
  3. Bubnov B. A., General boundary value problems for the Korteweg-de Vries equation in a bounded domain, Differentsial’nye Uravneniya 15 (1979), no. 1, pp. 26–31 & 185–186. Zbl0422.35069MR524931
  4. Cattabriga L., Un problema al contorno per una equazione parabolica di ordine dispari, Ann. Scuola Norm. Sup. Pisa 13 (1959), pp. 163–203. Zbl0134.08401MR123101
  5. Cerpa E., Exact controllability of a nonlinear Korteweg-de Vries equation on a critical spatial domain, SIAM J. Control Optim. 46 (2007), pp. 877–899. Zbl1147.93005MR2338431
  6. Cerpa E., Crépeau E., Boundary controlability for the non linear Korteweg-de Vries equation on any critical domain, Ann. Inst. H. Poincaré Anal. Non Linéaire 26 (2009), no. 2, 457–475. Zbl1158.93006MR2504039
  7. Chapouly M., Global controllability of a nonlinear Korteweg-de Vries equation, Communications in Contemporary Mathematics, à paraître. Zbl1170.93006
  8. Colin T., Ghidaglia J.-M., An initial-boundary value problem for the Korteweg-de Vries equation posed on a finite interval, Adv. Differential Equations 6 (2001), no. 12, pp. 1463–1492. Zbl1022.35055MR1858429
  9. Colliander J. E. and Kenig C. E., The generalized Korteweg-de Vries equation on the half line, Comm. Partial Diff. Eq. 27 (2002), no. 11-12, pp. 2187–2266. Zbl1041.35064MR1944029
  10. Coron J.-M., Crépeau E., Exact boundary controllability of a nonlinear KdV equation with critical lengths, J. Eur. Math. Soc 6 (2004), pp. 367–398. Zbl1061.93054MR2060480
  11. Coron J.-M., Guerrero S., Singular optimal control : A linear 1-D parabolic-hyperbolic example, Asymp. Anal. 44 3,4 (2005), pp. 237–257. Zbl1078.93009MR2176274
  12. Danchin R., Poches de tourbillon visqueuses, J. Math. Pures Appl. 76 (1997), pp. 609–647. Zbl0903.76020MR1472116
  13. Dawson L., Uniqueness properties of higher order dispersive equations, J. Differential Equations 236 (2007), no. 1, pp. 199–236. Zbl1122.35122MR2319925
  14. Doronin G. G., Larkin N A., Kawahara equation in a bounded domain. Discrete Contin. Dyn. Syst. Ser. B 10 (2008), no. 4, pp. 783–799. Zbl1157.35437MR2434910
  15. Faminskii A. V., On Two Initial Boundary Value Problems for the Generalized KdV Equation, Nonlinear Boundary Problems 14 (2004), pp. 58–71. Zbl1107.35399
  16. Fernández-Cara E., Zuazua E., The cost of approximate controllability for heat equations : the linear case. Adv. Differential Equations 5 (2000), no. 4-6, pp. 465–514. Zbl1007.93034MR1750109
  17. Fursikov A., Imanuvilov O. Yu., Controllability of Evolution Equations, Lecture Notes #34, Seoul National University, Korea, 1996. Zbl0862.49004MR1406566
  18. Glass O., Guerrero S., On the uniform controllability of the Burgers equation, SIAM J. Control Optim. 46 (2007), no. 4, pp. 1211–1238. Zbl1140.93013MR2346380
  19. Glass O., Guerrero S., Some exact controllability results for the linear KdV equation and uniform controllability in the zero-dispersion limit, Asymp. Anal. 60 (2008), no. 1-2, pp. 61–100. Zbl1160.35063MR2463799
  20. Glass O., Guerrero S., Uniform controllability of a transport equation in zero diffusion-dispersion limit, Math. Models Methods Appl. Sci., à paraître. Zbl1194.93025
  21. Glass O., Guerrero S., On the controllability of the fifth-order Korteweg-de Vries equation, Ann. Inst. H. Poincaré Anal. Non Linéaire, à paraître. Zbl1181.35233
  22. Guerrero S., Lebeau G., Singular optimal control for a transport-diffusion equation, Comm. Partial Differential Equations 32 (2007), no. 12, pp. 1813–1836. Zbl1135.35017MR2372489
  23. Holmer J., The initial-boundary value problem for the Korteweg-de Vries equation, Communications in Partial Differential Equations, 31 (2006), pp. 1151-1190. Zbl1111.35062MR2254610
  24. Kawahara R., Oscillatory solitary waves in dispersive media, J. Phys. Soc. Japan, 33 (1972), pp. 260–264. 
  25. Kenig C., Ponce G., Vega L., Higher-order nonlinear dispersive equations, Proc. Amer. Math. Soc. 122 (1994), no. 1, pp. 157–166. Zbl0810.35122MR1195480
  26. Kichenassamy S., Olver P. J., Existence and nonexistence of solitary wave solutions to higher-order model evolution equations, SIAM J. Math. Anal. 23 (1992), no. 5, pp. 1141–1166. Zbl0755.76023MR1177782
  27. Kwon S., Well-posedness and ill-posedness of the fifth-order modified KdV equation, Electron. J. Differential Equations 2008, No. 01, pp. 1–15. Zbl1133.35085MR2368888
  28. Laurent C., Rosier L., Zhang B.-Y., Control and Stabilization of the Korteweg-de Vries Equation on a Periodic Domain, preprint 2009. Zbl1213.93015
  29. Lax P. D., Levermore C. D., The zero dispersion limit for the Korteweg-de Vries KdV equation, Proc. Nat. Acad. Sci. U.S.A. 76 (1979), pp. 3602–3606. Zbl0411.35081MR540258
  30. LeFloch P. G., Hyperbolic systems of conservation laws : The theory of classical and nonclassical shock waves, Lectures in Mathematics, ETH Zürich, Birkhäuser, 2002. Zbl1019.35001MR1927887
  31. Lions J.-L., Exact controllability, stabilizability and perturbations for distributed systems, SIAM Review, 30 (1988), pp. 1–68. Zbl0644.49028MR931277
  32. Miller L., How violent are fast controls for Schrödinger and plate vibrations ?, Arch. Ration. Mech. Anal. 172 (2004), no. 3, pp. 429–456. Zbl1067.35130MR2062431
  33. Ponce G., Lax pairs and higher order models for water waves, J. Differential Equations 102 (1993), no. 2, pp. 360–381. Zbl0796.35148MR1216734
  34. Rosier L., Exact boundary controllability for the Korteweg-de Vries equation on a bounded domain. ESAIM Control Optim. Calc. Var. 2 (1997), pp. 33–55. Zbl0873.93008MR1440078
  35. Rosier L., Control of the surface of a fluid by a wavemaker. ESAIM Control Optim. Calc. Var. 10 (2004), no. 3, pp. 346–380 Zbl1094.93014MR2084328
  36. Russell D. L., Controllability and stabilizability theory for linear partial differential equations. Recent progress and open questions, SIAM Review 20 (1978), pp. 639–739. Zbl0397.93001MR508380
  37. Russell D. L., Zhang B. Y., Controllability and stabilizability of the third-order linear dispersion equation on a periodic domain. SIAM J. Control Optim. 31 (1993), no. 3, pp. 659–676. Zbl0771.93073MR1214759
  38. Russell D. L., Zhang B. Y., Exact controllability and stabilizability of the Korteweg-de Vries equation. Trans. Amer. Math. Soc. 348 (1996), no. 9, pp. 3643–3672. Zbl0862.93035MR1360229
  39. Seidman T. I., Two results on exact boundary control of parabolic equations, Appl. Math. Optim. 11 (1984), no. 2, pp. 145–152. Zbl0562.49003MR743923
  40. Zhang B.-Y., Exact boundary controllability of the Korteweg-de Vries equation, SIAM J. Control Optim. 37 (1999), no. 2, pp. 543–565. Zbl0930.35160MR1670653

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.