Problèmes de contrôle pour des équations dispersives unidimensionnelles
- [1] Ceremade Université Paris-Dauphine Place du Maréchal de Lattre de Tassigny 75775 Paris Cedex 16 France
Séminaire Équations aux dérivées partielles (2008-2009)
- Volume: 2008-2009, page 1-15
Access Full Article
topHow to cite
topGlass, Olivier. "Problèmes de contrôle pour des équations dispersives unidimensionnelles." Séminaire Équations aux dérivées partielles 2008-2009 (2008-2009): 1-15. <http://eudml.org/doc/11199>.
@article{Glass2008-2009,
affiliation = {Ceremade Université Paris-Dauphine Place du Maréchal de Lattre de Tassigny 75775 Paris Cedex 16 France},
author = {Glass, Olivier},
journal = {Séminaire Équations aux dérivées partielles},
keywords = {dispersive equations; exact controllability; boundary control},
language = {fre},
pages = {1-15},
publisher = {Centre de mathématiques Laurent Schwartz, École polytechnique},
title = {Problèmes de contrôle pour des équations dispersives unidimensionnelles},
url = {http://eudml.org/doc/11199},
volume = {2008-2009},
year = {2008-2009},
}
TY - JOUR
AU - Glass, Olivier
TI - Problèmes de contrôle pour des équations dispersives unidimensionnelles
JO - Séminaire Équations aux dérivées partielles
PY - 2008-2009
PB - Centre de mathématiques Laurent Schwartz, École polytechnique
VL - 2008-2009
SP - 1
EP - 15
LA - fre
KW - dispersive equations; exact controllability; boundary control
UR - http://eudml.org/doc/11199
ER -
References
top- Banks S. P.,Exact boundary controllability and optimal control for a generalised Korteweg de Vries equation, Nonlinear Anal. 47 (2001), no. 8, pp. 5537–5546. Zbl1042.93503MR1974759
- Bona J., Sun S. M., Zhang B.-Y., A nonhomogeneous boundary-value problem for the Korteweg-de Vries equation posed on a finite domain, Comm. Partial Differential Equations 28 (2003), no. 7-8, pp. 1391–1436. Zbl1057.35049MR1998942
- Bubnov B. A., General boundary value problems for the Korteweg-de Vries equation in a bounded domain, Differentsial’nye Uravneniya 15 (1979), no. 1, pp. 26–31 & 185–186. Zbl0422.35069MR524931
- Cattabriga L., Un problema al contorno per una equazione parabolica di ordine dispari, Ann. Scuola Norm. Sup. Pisa 13 (1959), pp. 163–203. Zbl0134.08401MR123101
- Cerpa E., Exact controllability of a nonlinear Korteweg-de Vries equation on a critical spatial domain, SIAM J. Control Optim. 46 (2007), pp. 877–899. Zbl1147.93005MR2338431
- Cerpa E., Crépeau E., Boundary controlability for the non linear Korteweg-de Vries equation on any critical domain, Ann. Inst. H. Poincaré Anal. Non Linéaire 26 (2009), no. 2, 457–475. Zbl1158.93006MR2504039
- Chapouly M., Global controllability of a nonlinear Korteweg-de Vries equation, Communications in Contemporary Mathematics, à paraître. Zbl1170.93006
- Colin T., Ghidaglia J.-M., An initial-boundary value problem for the Korteweg-de Vries equation posed on a finite interval, Adv. Differential Equations 6 (2001), no. 12, pp. 1463–1492. Zbl1022.35055MR1858429
- Colliander J. E. and Kenig C. E., The generalized Korteweg-de Vries equation on the half line, Comm. Partial Diff. Eq. 27 (2002), no. 11-12, pp. 2187–2266. Zbl1041.35064MR1944029
- Coron J.-M., Crépeau E., Exact boundary controllability of a nonlinear KdV equation with critical lengths, J. Eur. Math. Soc 6 (2004), pp. 367–398. Zbl1061.93054MR2060480
- Coron J.-M., Guerrero S., Singular optimal control : A linear 1-D parabolic-hyperbolic example, Asymp. Anal. 44 3,4 (2005), pp. 237–257. Zbl1078.93009MR2176274
- Danchin R., Poches de tourbillon visqueuses, J. Math. Pures Appl. 76 (1997), pp. 609–647. Zbl0903.76020MR1472116
- Dawson L., Uniqueness properties of higher order dispersive equations, J. Differential Equations 236 (2007), no. 1, pp. 199–236. Zbl1122.35122MR2319925
- Doronin G. G., Larkin N A., Kawahara equation in a bounded domain. Discrete Contin. Dyn. Syst. Ser. B 10 (2008), no. 4, pp. 783–799. Zbl1157.35437MR2434910
- Faminskii A. V., On Two Initial Boundary Value Problems for the Generalized KdV Equation, Nonlinear Boundary Problems 14 (2004), pp. 58–71. Zbl1107.35399
- Fernández-Cara E., Zuazua E., The cost of approximate controllability for heat equations : the linear case. Adv. Differential Equations 5 (2000), no. 4-6, pp. 465–514. Zbl1007.93034MR1750109
- Fursikov A., Imanuvilov O. Yu., Controllability of Evolution Equations, Lecture Notes #34, Seoul National University, Korea, 1996. Zbl0862.49004MR1406566
- Glass O., Guerrero S., On the uniform controllability of the Burgers equation, SIAM J. Control Optim. 46 (2007), no. 4, pp. 1211–1238. Zbl1140.93013MR2346380
- Glass O., Guerrero S., Some exact controllability results for the linear KdV equation and uniform controllability in the zero-dispersion limit, Asymp. Anal. 60 (2008), no. 1-2, pp. 61–100. Zbl1160.35063MR2463799
- Glass O., Guerrero S., Uniform controllability of a transport equation in zero diffusion-dispersion limit, Math. Models Methods Appl. Sci., à paraître. Zbl1194.93025
- Glass O., Guerrero S., On the controllability of the fifth-order Korteweg-de Vries equation, Ann. Inst. H. Poincaré Anal. Non Linéaire, à paraître. Zbl1181.35233
- Guerrero S., Lebeau G., Singular optimal control for a transport-diffusion equation, Comm. Partial Differential Equations 32 (2007), no. 12, pp. 1813–1836. Zbl1135.35017MR2372489
- Holmer J., The initial-boundary value problem for the Korteweg-de Vries equation, Communications in Partial Differential Equations, 31 (2006), pp. 1151-1190. Zbl1111.35062MR2254610
- Kawahara R., Oscillatory solitary waves in dispersive media, J. Phys. Soc. Japan, 33 (1972), pp. 260–264.
- Kenig C., Ponce G., Vega L., Higher-order nonlinear dispersive equations, Proc. Amer. Math. Soc. 122 (1994), no. 1, pp. 157–166. Zbl0810.35122MR1195480
- Kichenassamy S., Olver P. J., Existence and nonexistence of solitary wave solutions to higher-order model evolution equations, SIAM J. Math. Anal. 23 (1992), no. 5, pp. 1141–1166. Zbl0755.76023MR1177782
- Kwon S., Well-posedness and ill-posedness of the fifth-order modified KdV equation, Electron. J. Differential Equations 2008, No. 01, pp. 1–15. Zbl1133.35085MR2368888
- Laurent C., Rosier L., Zhang B.-Y., Control and Stabilization of the Korteweg-de Vries Equation on a Periodic Domain, preprint 2009. Zbl1213.93015
- Lax P. D., Levermore C. D., The zero dispersion limit for the Korteweg-de Vries KdV equation, Proc. Nat. Acad. Sci. U.S.A. 76 (1979), pp. 3602–3606. Zbl0411.35081MR540258
- LeFloch P. G., Hyperbolic systems of conservation laws : The theory of classical and nonclassical shock waves, Lectures in Mathematics, ETH Zürich, Birkhäuser, 2002. Zbl1019.35001MR1927887
- Lions J.-L., Exact controllability, stabilizability and perturbations for distributed systems, SIAM Review, 30 (1988), pp. 1–68. Zbl0644.49028MR931277
- Miller L., How violent are fast controls for Schrödinger and plate vibrations ?, Arch. Ration. Mech. Anal. 172 (2004), no. 3, pp. 429–456. Zbl1067.35130MR2062431
- Ponce G., Lax pairs and higher order models for water waves, J. Differential Equations 102 (1993), no. 2, pp. 360–381. Zbl0796.35148MR1216734
- Rosier L., Exact boundary controllability for the Korteweg-de Vries equation on a bounded domain. ESAIM Control Optim. Calc. Var. 2 (1997), pp. 33–55. Zbl0873.93008MR1440078
- Rosier L., Control of the surface of a fluid by a wavemaker. ESAIM Control Optim. Calc. Var. 10 (2004), no. 3, pp. 346–380 Zbl1094.93014MR2084328
- Russell D. L., Controllability and stabilizability theory for linear partial differential equations. Recent progress and open questions, SIAM Review 20 (1978), pp. 639–739. Zbl0397.93001MR508380
- Russell D. L., Zhang B. Y., Controllability and stabilizability of the third-order linear dispersion equation on a periodic domain. SIAM J. Control Optim. 31 (1993), no. 3, pp. 659–676. Zbl0771.93073MR1214759
- Russell D. L., Zhang B. Y., Exact controllability and stabilizability of the Korteweg-de Vries equation. Trans. Amer. Math. Soc. 348 (1996), no. 9, pp. 3643–3672. Zbl0862.93035MR1360229
- Seidman T. I., Two results on exact boundary control of parabolic equations, Appl. Math. Optim. 11 (1984), no. 2, pp. 145–152. Zbl0562.49003MR743923
- Zhang B.-Y., Exact boundary controllability of the Korteweg-de Vries equation, SIAM J. Control Optim. 37 (1999), no. 2, pp. 543–565. Zbl0930.35160MR1670653
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.