On the controllability of the fifth-order Korteweg-de Vries equation

O. Glass; S. Guerrero

Annales de l'I.H.P. Analyse non linéaire (2009)

  • Volume: 26, Issue: 6, page 2181-2209
  • ISSN: 0294-1449

How to cite

top

Glass, O., and Guerrero, S.. "On the controllability of the fifth-order Korteweg-de Vries equation." Annales de l'I.H.P. Analyse non linéaire 26.6 (2009): 2181-2209. <http://eudml.org/doc/78930>.

@article{Glass2009,
author = {Glass, O., Guerrero, S.},
journal = {Annales de l'I.H.P. Analyse non linéaire},
keywords = {controllability; fifth-order Korteweg-de Vries equation; initial-boundary value problem},
language = {eng},
number = {6},
pages = {2181-2209},
publisher = {Elsevier},
title = {On the controllability of the fifth-order Korteweg-de Vries equation},
url = {http://eudml.org/doc/78930},
volume = {26},
year = {2009},
}

TY - JOUR
AU - Glass, O.
AU - Guerrero, S.
TI - On the controllability of the fifth-order Korteweg-de Vries equation
JO - Annales de l'I.H.P. Analyse non linéaire
PY - 2009
PB - Elsevier
VL - 26
IS - 6
SP - 2181
EP - 2209
LA - eng
KW - controllability; fifth-order Korteweg-de Vries equation; initial-boundary value problem
UR - http://eudml.org/doc/78930
ER -

References

top
  1. [1] Bona J., Sun S.M., Zhang B.-Y., A nonhomogeneous boundary-value problem for the Korteweg–de Vries equation posed on a finite domain, Comm. Partial Differential Equations28 (7–8) (2003) 1391-1436. Zbl1057.35049MR1998942
  2. [2] Cerpa E., Exact controllability of a nonlinear Korteweg–de Vries equation on a critical spatial domain, SIAM J. Control Optim.46 (2007) 877-899. Zbl1147.93005MR2338431
  3. [3] Cerpa E., Crépeau E., Boundary controllability for the nonlinear Korteweg–de Vries equation on any critical domain, Ann. Inst. H. Poincaré Anal. Non Linéaire26 (2) (2009) 457-475. Zbl1158.93006MR2504039
  4. [4] Colin T., Ghidaglia J.-M., An initial-boundary value problem for the Korteweg–de Vries equation posed on a finite interval, Adv. Differential Equations6 (12) (2001) 1463-1492. Zbl1022.35055MR1858429
  5. [5] Colliander J.E., Kenig C.E., The generalized Korteweg–de Vries equation on the half line, Comm. Partial Differential Equations27 (11–12) (2002) 2187-2266. Zbl1041.35064MR1944029
  6. [6] Coron J.-M., Crépeau E., Exact boundary controllability of a nonlinear KdV equation with critical lengths, J. Eur. Math. Soc.6 (2004) 367-398. Zbl1061.93054MR2060480
  7. [7] Coron J.-M., Control and Nonlinearity, Math. Surveys Monogr., vol. 136, Amer. Math. Soc., Providence, RI, 2007. Zbl1140.93002MR2302744
  8. [8] Cui S.B., Deng D.G., Tao S.P., Global existence of solutions for the Cauchy problem of the Kawahara equation with L 2 initial data, Acta Math. Sin. (Engl. Ser.)22 (5) (2006) 1457-1466. Zbl1105.35105MR2251404
  9. [9] Dawson L., Uniqueness properties of higher order dispersive equations, J. Differential Equations236 (1) (2007) 199-236. Zbl1122.35122MR2319925
  10. [10] Doronin G., Larkin N., Kawahara equation in a bounded domain, Discrete Contin. Dyn. Syst. Ser. B10 (4) (2008) 783-799. Zbl1157.35437MR2434910
  11. [11] Faminskii A.V., On two initial boundary value problems for the generalized KdV equation, Nonlinear Bound. Probl.14 (2004) 58-71. Zbl1107.35399
  12. [12] Fursikov A., Imanuvilov O.Yu., Controllability of Evolution Equations, Lecture Notes Ser., vol. 34, Seoul National University, Korea, 1996. Zbl0862.49004MR1406566
  13. [13] Glass O., Guerrero S., Some exact controllability results for the linear KdV equation and uniform controllability in the zero-dispersion limit, Asymptot. Anal.60 (1–2) (2008) 61-100. Zbl1160.35063MR2463799
  14. [14] Holmer J., The initial-boundary value problem for the Korteweg–de Vries equation, Comm. Partial Differential Equations31 (2006) 1151-1190. Zbl1111.35062MR2254610
  15. [15] Kawahara R., Oscillatory solitary waves in dispersive media, J. Phys. Soc. Japan33 (1972) 260-264. 
  16. [16] Kenig C., Ponce G., Vega L., Higher-order nonlinear dispersive equations, Proc. Amer. Math. Soc.122 (1) (1994) 157-166. Zbl0810.35122MR1195480
  17. [17] Kichenassamy S., Olver P.J., Existence and nonexistence of solitary wave solutions to higher-order model evolution equations, SIAM J. Math. Anal.23 (5) (1992) 1141-1166. Zbl0755.76023MR1177782
  18. [18] Kwon S., Well-posedness and ill-posedness of the fifth-order modified KdV equation, Electron. J. Differential Equations2008 (01) (2008) 1-15. Zbl1133.35085MR2368888
  19. [19] Olver P.J., Hamiltonian and non-Hamiltonian models for water waves, in: Ciarlet P.G., Roseau M. (Eds.), Trends and Applications of Pure Mathematics to Mechanics, Lecture Notes in Phys., vol. 195, Springer-Verlag, New York, 1984, pp. 273-290. Zbl0583.76014MR755731
  20. [20] Pazy A., Semigroups of Linear Operators and Applications to Partial Differential Equations, Appl. Math. Sci., vol. 44, Springer-Verlag, New York, 1983. Zbl0516.47023MR710486
  21. [21] Ponce G., Lax pairs and higher order models for water waves, J. Differential Equations102 (2) (1993) 360-381. Zbl0796.35148MR1216734
  22. [22] Rosier L., Exact boundary controllability for the Korteweg–de Vries equation on a bounded domain, ESAIM Control Optim. Calc. Var.2 (1997) 33-55. Zbl0873.93008MR1440078
  23. [23] Rosier L., Exact boundary controllability for the linear Korteweg–de Vries equation on the half-line, SIAM J. Control Optim.39 (2) (2000) 331-351. Zbl0966.93055MR1788062
  24. [24] Rosier L., Control of the surface of a fluid by a wavemaker, ESAIM Control Optim. Calc. Var.10 (3) (2004) 346-380. Zbl1094.93014MR2084328
  25. [25] Russell D.L., Zhang B.Y., Controllability and stabilizability of the third-order linear dispersion equation on a periodic domain, SIAM J. Control Optim.31 (3) (1993) 659-676. Zbl0771.93073MR1214759
  26. [26] Russell D.L., Zhang B.Y., Exact controllability and stabilizability of the Korteweg–de Vries equation, Trans. Amer. Math. Soc.348 (9) (1996) 3643-3672. Zbl0862.93035MR1360229

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.