On the controllability of the fifth-order Korteweg-de Vries equation
Annales de l'I.H.P. Analyse non linéaire (2009)
- Volume: 26, Issue: 6, page 2181-2209
- ISSN: 0294-1449
Access Full Article
topHow to cite
topGlass, O., and Guerrero, S.. "On the controllability of the fifth-order Korteweg-de Vries equation." Annales de l'I.H.P. Analyse non linéaire 26.6 (2009): 2181-2209. <http://eudml.org/doc/78930>.
@article{Glass2009,
author = {Glass, O., Guerrero, S.},
journal = {Annales de l'I.H.P. Analyse non linéaire},
keywords = {controllability; fifth-order Korteweg-de Vries equation; initial-boundary value problem},
language = {eng},
number = {6},
pages = {2181-2209},
publisher = {Elsevier},
title = {On the controllability of the fifth-order Korteweg-de Vries equation},
url = {http://eudml.org/doc/78930},
volume = {26},
year = {2009},
}
TY - JOUR
AU - Glass, O.
AU - Guerrero, S.
TI - On the controllability of the fifth-order Korteweg-de Vries equation
JO - Annales de l'I.H.P. Analyse non linéaire
PY - 2009
PB - Elsevier
VL - 26
IS - 6
SP - 2181
EP - 2209
LA - eng
KW - controllability; fifth-order Korteweg-de Vries equation; initial-boundary value problem
UR - http://eudml.org/doc/78930
ER -
References
top- [1] Bona J., Sun S.M., Zhang B.-Y., A nonhomogeneous boundary-value problem for the Korteweg–de Vries equation posed on a finite domain, Comm. Partial Differential Equations28 (7–8) (2003) 1391-1436. Zbl1057.35049MR1998942
- [2] Cerpa E., Exact controllability of a nonlinear Korteweg–de Vries equation on a critical spatial domain, SIAM J. Control Optim.46 (2007) 877-899. Zbl1147.93005MR2338431
- [3] Cerpa E., Crépeau E., Boundary controllability for the nonlinear Korteweg–de Vries equation on any critical domain, Ann. Inst. H. Poincaré Anal. Non Linéaire26 (2) (2009) 457-475. Zbl1158.93006MR2504039
- [4] Colin T., Ghidaglia J.-M., An initial-boundary value problem for the Korteweg–de Vries equation posed on a finite interval, Adv. Differential Equations6 (12) (2001) 1463-1492. Zbl1022.35055MR1858429
- [5] Colliander J.E., Kenig C.E., The generalized Korteweg–de Vries equation on the half line, Comm. Partial Differential Equations27 (11–12) (2002) 2187-2266. Zbl1041.35064MR1944029
- [6] Coron J.-M., Crépeau E., Exact boundary controllability of a nonlinear KdV equation with critical lengths, J. Eur. Math. Soc.6 (2004) 367-398. Zbl1061.93054MR2060480
- [7] Coron J.-M., Control and Nonlinearity, Math. Surveys Monogr., vol. 136, Amer. Math. Soc., Providence, RI, 2007. Zbl1140.93002MR2302744
- [8] Cui S.B., Deng D.G., Tao S.P., Global existence of solutions for the Cauchy problem of the Kawahara equation with initial data, Acta Math. Sin. (Engl. Ser.)22 (5) (2006) 1457-1466. Zbl1105.35105MR2251404
- [9] Dawson L., Uniqueness properties of higher order dispersive equations, J. Differential Equations236 (1) (2007) 199-236. Zbl1122.35122MR2319925
- [10] Doronin G., Larkin N., Kawahara equation in a bounded domain, Discrete Contin. Dyn. Syst. Ser. B10 (4) (2008) 783-799. Zbl1157.35437MR2434910
- [11] Faminskii A.V., On two initial boundary value problems for the generalized KdV equation, Nonlinear Bound. Probl.14 (2004) 58-71. Zbl1107.35399
- [12] Fursikov A., Imanuvilov O.Yu., Controllability of Evolution Equations, Lecture Notes Ser., vol. 34, Seoul National University, Korea, 1996. Zbl0862.49004MR1406566
- [13] Glass O., Guerrero S., Some exact controllability results for the linear KdV equation and uniform controllability in the zero-dispersion limit, Asymptot. Anal.60 (1–2) (2008) 61-100. Zbl1160.35063MR2463799
- [14] Holmer J., The initial-boundary value problem for the Korteweg–de Vries equation, Comm. Partial Differential Equations31 (2006) 1151-1190. Zbl1111.35062MR2254610
- [15] Kawahara R., Oscillatory solitary waves in dispersive media, J. Phys. Soc. Japan33 (1972) 260-264.
- [16] Kenig C., Ponce G., Vega L., Higher-order nonlinear dispersive equations, Proc. Amer. Math. Soc.122 (1) (1994) 157-166. Zbl0810.35122MR1195480
- [17] Kichenassamy S., Olver P.J., Existence and nonexistence of solitary wave solutions to higher-order model evolution equations, SIAM J. Math. Anal.23 (5) (1992) 1141-1166. Zbl0755.76023MR1177782
- [18] Kwon S., Well-posedness and ill-posedness of the fifth-order modified KdV equation, Electron. J. Differential Equations2008 (01) (2008) 1-15. Zbl1133.35085MR2368888
- [19] Olver P.J., Hamiltonian and non-Hamiltonian models for water waves, in: Ciarlet P.G., Roseau M. (Eds.), Trends and Applications of Pure Mathematics to Mechanics, Lecture Notes in Phys., vol. 195, Springer-Verlag, New York, 1984, pp. 273-290. Zbl0583.76014MR755731
- [20] Pazy A., Semigroups of Linear Operators and Applications to Partial Differential Equations, Appl. Math. Sci., vol. 44, Springer-Verlag, New York, 1983. Zbl0516.47023MR710486
- [21] Ponce G., Lax pairs and higher order models for water waves, J. Differential Equations102 (2) (1993) 360-381. Zbl0796.35148MR1216734
- [22] Rosier L., Exact boundary controllability for the Korteweg–de Vries equation on a bounded domain, ESAIM Control Optim. Calc. Var.2 (1997) 33-55. Zbl0873.93008MR1440078
- [23] Rosier L., Exact boundary controllability for the linear Korteweg–de Vries equation on the half-line, SIAM J. Control Optim.39 (2) (2000) 331-351. Zbl0966.93055MR1788062
- [24] Rosier L., Control of the surface of a fluid by a wavemaker, ESAIM Control Optim. Calc. Var.10 (3) (2004) 346-380. Zbl1094.93014MR2084328
- [25] Russell D.L., Zhang B.Y., Controllability and stabilizability of the third-order linear dispersion equation on a periodic domain, SIAM J. Control Optim.31 (3) (1993) 659-676. Zbl0771.93073MR1214759
- [26] Russell D.L., Zhang B.Y., Exact controllability and stabilizability of the Korteweg–de Vries equation, Trans. Amer. Math. Soc.348 (9) (1996) 3643-3672. Zbl0862.93035MR1360229
Citations in EuDML Documents
topNotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.