Hidden symmetries of integrable systems in Yang-Mills theory and Kähler geometry
Séminaire Équations aux dérivées partielles (Polytechnique) (1990-1991)
- page 1-15
Access Full Article
topHow to cite
topTakasaki, Kanehisa. "Hidden symmetries of integrable systems in Yang-Mills theory and Kähler geometry." Séminaire Équations aux dérivées partielles (Polytechnique) (1990-1991): 1-15. <http://eudml.org/doc/112025>.
@article{Takasaki1990-1991,
author = {Takasaki, Kanehisa},
journal = {Séminaire Équations aux dérivées partielles (Polytechnique)},
keywords = {Yang-Mills; Einstein equations; completely integrable; self-dual},
language = {eng},
pages = {1-15},
publisher = {Ecole Polytechnique, Centre de Mathématiques},
title = {Hidden symmetries of integrable systems in Yang-Mills theory and Kähler geometry},
url = {http://eudml.org/doc/112025},
year = {1990-1991},
}
TY - JOUR
AU - Takasaki, Kanehisa
TI - Hidden symmetries of integrable systems in Yang-Mills theory and Kähler geometry
JO - Séminaire Équations aux dérivées partielles (Polytechnique)
PY - 1990-1991
PB - Ecole Polytechnique, Centre de Mathématiques
SP - 1
EP - 15
LA - eng
KW - Yang-Mills; Einstein equations; completely integrable; self-dual
UR - http://eudml.org/doc/112025
ER -
References
top- [Sa-Sa] Sato, M., Sato, Y., Soliton equations as dynamical systems in an infinite dimensional Grassmann manifold, in Nonlinear Partial Differential Equations in Applied Sciences, P.D. Lax, H. Fujita, G. Strang (eds.), North-Holland, 1982 Zbl0528.58020
- [Se-Wi] Segal, G., and Wilson, G., Loop groups and equations of KdV type, Publ. IHES61 (1985), 5-65. Zbl0592.35112MR783348
- [Ta1] Takasaki, K., Geometry of universal Grassmannian manifold from algebraic point of view, Reviews inMath. Phys.1 (1989), 1-46. Zbl0716.58001MR1041529
- [Ch] Chau, L.-L., Chiral fields, self-dual Yang-Mills fields as integrable systems, and the role of the Kac-Moody algebra, in Nonlinear phenomena, K.B. Wolf (ed.), Lecture Notes in Physics vol. 189, Splinger-Verlag, 1983. Zbl0582.35095MR727859
- [Bo] Boyer, C.P., The geometry of self-dual Einstein spaces, in Nonlinear Phenomena, K.B. Wolf (ed.), Lecture Notes in Physics vol. 189, Springer, 1983. MR727857
- [Wal] Ward, R.S., On self-dual gauge fields, Phys. Lett.61A (1977), 81-82. Zbl0964.81519MR443823
- [Pe] Penrose, R., Nonlinear gravitons and curved twistor theory, Gen. Rel. Grav.7 (1976), 31-52. Zbl0354.53025MR439004
- [Be-Za] Belavin, A.A. and Zakharov, V.E., Yang-Mills equations as inverse scattering problem, Phys. Lett.73B (1978), 53-57. MR484164
- [Ch-Pr-Si] Chau, L.-L., Prasad, M.K. and Sinha, A., Some aspects of the linear system for self-dual Yang-Mills fields, Phys. Rev.D24 (1981), 1574-1580. MR628859
- [Fo-Ho-Pa] Forgács, P., Horváth, Z., and Palla, L., Towards complete integrability of the self-dual equations, Phys. Rev.D23 (1981), 1876- . MR610412
- [Po] Pohlmeyer, K., On the Lagrangian theory of anti-self-dual fields in four dimensional Euclidean space, Commun. Math. Phys.72 (1980), 37-47. MR573816
- [Wa2] Ward, R.S., Completely solvable gauge-field equations in dimension greater than four, Nucl. Phys.B236 (1984), 381-396. MR739812
- [Co-Go-Ke] Corrigan, E., Goddard, P., and Kent, A., Some comments on the ADHM construction in 4k dimensions, Commun. Math. Phys.100 (1985), 1-13. Zbl0587.58059MR796159
- [At-Hi-Dr-Ma] Atiyah, M.F., Hitchin, N.J., Drinfeld, V.G. and Manin, Yu. I., Construction of instantons, Phys. Lett.65A (1978), 185-187; Atiyah, M.F., Geometry of gauge fields, Scuola Norm. Sup., Pisa, 1979. Zbl0424.14004MR598562
- [Ya] Yang, C.N., Condition of self-duality for SU(2) gauge fields on Euclidean four-dimensional space, Phys. Rev. Lett.38 (1977), 1377-1379. MR475357
- [P1] Plebanski, J.F., Some solutions of complex Einstein equations, J. Math. Phys.16 (1975), 2395-2402. MR386609
- [Hi-Ka-Li-Ro] Hitchin, N.J., Kahlhede, A., Lindström, U., and Roček, M., Hyperkähler metrics and supersymmetry, Commun. Math. Phys.108 (1987), 535-589. Zbl0612.53043MR877637
- [Tw1] Lerner, D.E., and Sommers, P.D. (ed.), Complex manifold techniques in theoretial physics, Pitman, 1978. Zbl0407.00015
- [Tw2] Hughston, L.P., and Ward, R.S. (ed.), Advances in twistor theory, Pitman, 1979. Zbl0463.53039MR578487
- [Tw3] Doebner, H.D., and Palev, T.D. (ed.), Twistor geometry and non-linear systems, Lecture Notes in Mathematics vol. 970, Springer-Verlag, 1982. Zbl0488.00016MR699798
- [Tw4] Ward, R.S., and Wells, R.O., Twistor geometry and field theory, Cambridge University Press, 1989. Zbl0714.53059MR1054377
- [Tw5] Mason, L.J., and hughston, L.P. (ed.), Further advances in twistor theory, Pitman, 1990.
- [Tw6] Baily, T.N., and Boston, R.J. (ed.), Twistors in mathematics and physics, London Mathematical Society Lecture Note Series vol. 156, Cambridge University Press, 1990. Zbl0702.53003MR1089905
- [Ka] Kac, V.G., Infinite dimensional Lie algebras, Cambridge Univ. Press, 1985. Zbl0574.17010MR823672
- [Pr-Se] Pressley, A.N., and Segal, G.B., Loop groups and their representations, Oxford University Press, 1986. Zbl0618.22011MR900587
- [Da-Ji-Mi-Ka] Date, E., Jimbo, M., Kashiwara, M., Miwa, T., Transformation theory for soliton equations III-VI, J. Phys. Soc. Japan50 (1982), 3806-3812, 3813-3818; Phyica4D (1982), 343-365; Publ. RIMS., Kyoto Univ., 18 (1982), 1077-1110. Zbl0571.35099
- [Ue-Na] Ueno, K., Nakamura, Y., Transformation theory for anti-self-dual equations and the Riemann-Hilbert problem, Phys. Lett.109B (1982), 273-278. MR647108
- (Ch-Ge-WuJ Chau, L.-L., Ge, M.-L., Wu, Y.-S., Kac-Moody algebra in the self-dual Yang-Mills equation, Phys. Rev.D25 (1982), 1086-1094. MR646392
- [Do] Dolan, L., A new symmetry group of real self-dual Yang-Mills theory, Phys. Lett.113B (1982), 387-390. MR664383
- [Bo-P1] Boyer, C.P., Plebanski, J.F., An infinite hierarchy of conservation laws and nonlinear superposition principles for self-dual Einstein spaces, J. Math. Phys.26 (1985), 229-234. Zbl0555.53044MR776490
- [Ta2] Takasaki, K., A new approach to the self-dual Yang-Mills equations, Commun. Math. Phys.94 (1984), 35-59; Hierarchy structure in integrable systems of gauge fields and underlying Lie algebras, Commun. Math. Phys.127 (1990), 225-238. Zbl0692.58044MR763761
- [Ta3] Takasaki, K., An infinite number of hidden variables in hyper-Kähler metrics, J. Math. Phys.30 (1989),1515-1521; Symmetries of hyper-Kähler (or Poisson gauge field) hierarchy, J. Math. Phys.31 (1990), 1877-1888. Zbl0683.53017MR1002256
- [Le-Mu] Leznov, A.N., Mukhtarov, M.A., Deformation of algebras and solutions of self-duality equation, J. Math. Phys.28 (1987), 2574-2578. Zbl0663.35078MR913409
- [Le-Sa] Leznov, A.N., Saveliev, V.M., Exactly and completely integrable nonlinear dynamical sysmtems, Acta Applicandae Mathematicae16 (1989), 1-74. Zbl0683.58025MR1011902
- [Ta4] Takasaki, K., Integrable systems in gauge theory, Kähler geometry and super KP hierarchy - symmetries and algebraic point of view, talk at ICM-90, Kyoto, August, 1990; Kyoto University preprint RIMS-714, September, 1990. MR1159305
- [Bi-F1-Sa] Biran, B., Floratos, E.G.F., and Savvidy, G.K., The self-dual closed membranes, Phys. Lett.198B (1987), 329-332. MR918701
- [F1-Le] Floratos, F.G., and Leontaris, G.K., Integrability of the self-dual membranes in (4+1) dimensions and the Toda lattice, Phys. Lett.223B (1989), 153-156. MR1001109
- [Gr-Tz] Grabowski, F., and Tze, C.-H., Generalized self-dual bosonic membranes, vector corss-products and analyticity in higher dimensions, Phys. Lett.224B (1989), 259-264. MR1003764
- [Za] Zaikov, R.P., Self-duality in the theory of the bosonic p-branes, Phys. Lett.211B (1988), 281-284. MR958278
- [Ar-Sa] Arakelyan, T.A., and Savvidy, G.K., Cocycles of area-preserving diffeomorphisms and anomalies in the theory of relativistic surfaces, Phys. Lett.214B (1988), 350-356. MR969983
- [Ba-Po-Se] Bars, I., Pope, C.N., and Sezgin, E., Central extensions of area preserving membrane algebras, Phys. Lett.210B (1988), 85-91. MR959497
- [F1-I1] Floratos, F.G., and Iliopoulos, A note on the classical symmetries of the closed bosonic membranes, J., Phys. Lett.201B (1988), 237-240. MR926871
- [Ho1] Hoppe, J., DiffAT2, and the curvature of some infinite dimensional manifolds, Phys. Lett.215B (1988), 706-710. MR973588
- [Ho2] Hoppe, J., Diffeomorphism groups, quantization, and SU(oo), Int. J. Mod. Phys.A4 (19) (1989), 5235-5248. Zbl0707.17018MR1020144
- [Ba1] Bakas, I., The large-N limit of extended conformal symmetries, Phys. Lett.228B (1989), 57-63. MR1015910
- [Ba2] Bakas, I., The structure of the W∞ algebra, Maryland University preprint UMD-90-085, November, 1980.
- [Oo-Va] Ooguri, H., and Vafa, C., Self-duality and N = 2 string magic, Univ. Chicago preprint, EFI-90-24, April 1990. Zbl1020.81792MR1063040
- [Ya-Ch] Yamagishi, K., and Chappline, F., Induced 4d self-dual quantum gravity:- W∞ algebraic approach -, Laurence Livermore National Laboratory preprint, April 1990. Zbl0736.17040
- [Pa1] Park, Q-Han, Self-dual gravity as a large-N limit of the 2D non-linear sigma model, Phys. Lett.238B (1990), 287-290. MR1050734
- [Pa2] Park, Q-Han, Extended conformal symmetries in real heavens, Phys. Lett.236B (1990), 429-432. MR1041737
- [Wi] Witten, E., Surprises with topological field theorries, Advanced Study Institute preprint IASSNS-HEP-90/37, April, 1990.
- [Bo-Fi] Boyer, C., and Finley, J.D., Killing vectors in self-dual, Euclidean Einstein spaces, J. Math. Phys.23 (1982), 1126-1128. Zbl0484.53051MR660020
- [Ge-Da] Gegenberg, J.D., and Das, A., Stationary Riemannian space-times with self-dual curvature, Gen. Rel. Grav.16 (1984), 817-829. Zbl0545.53039MR759978
- [Hi] Hitchin, N.J., Complex manifolds and Einstein's equations, in Twistor Geometry and Non-linear Systems, H.D. Doebner and T. Weber (eds.), Lecture Notes in Mathematics vol. 970, pp.2-42, Springer-Verlag1982. Zbl0507.53025MR699802
- [Jo-To] Jones, P.E., and Tod, K.P., Minitwistor spaces and Einstein-Weyl spaces, Class. Quantum Grav.2 (1985), 565-577. Zbl0575.53042MR795102
- [Wa3] Ward, R.S., Winstein-Weyl spaces and SU(∞) Toda fields, Class. Quantum Grav.7 (1990). L95-L98. Zbl0687.53044
- [LeBr] LeBrun, C., Explicit self-dual metrics on CP2 # ... # CP2, preprint, 1990.
- [Sa-Ve] Saveliev, M.V., and Vershik, A.M., Continual analogues of contragredient Lie algebras, Commun. Math. Phys.126 (1989), 367-378; New examples of continuum graded Lie algebras, Phys. Lett.143A (1990), 121-128. Zbl0691.17012MR1027502
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.