Hidden symmetries of integrable systems in Yang-Mills theory and Kähler geometry

Kanehisa Takasaki

Séminaire Équations aux dérivées partielles (Polytechnique) (1990-1991)

  • page 1-15

How to cite


Takasaki, Kanehisa. "Hidden symmetries of integrable systems in Yang-Mills theory and Kähler geometry." Séminaire Équations aux dérivées partielles (Polytechnique) (1990-1991): 1-15. <http://eudml.org/doc/112025>.

author = {Takasaki, Kanehisa},
journal = {Séminaire Équations aux dérivées partielles (Polytechnique)},
keywords = {Yang-Mills; Einstein equations; completely integrable; self-dual},
language = {eng},
pages = {1-15},
publisher = {Ecole Polytechnique, Centre de Mathématiques},
title = {Hidden symmetries of integrable systems in Yang-Mills theory and Kähler geometry},
url = {http://eudml.org/doc/112025},
year = {1990-1991},

AU - Takasaki, Kanehisa
TI - Hidden symmetries of integrable systems in Yang-Mills theory and Kähler geometry
JO - Séminaire Équations aux dérivées partielles (Polytechnique)
PY - 1990-1991
PB - Ecole Polytechnique, Centre de Mathématiques
SP - 1
EP - 15
LA - eng
KW - Yang-Mills; Einstein equations; completely integrable; self-dual
UR - http://eudml.org/doc/112025
ER -


  1. [Sa-Sa] Sato, M., Sato, Y., Soliton equations as dynamical systems in an infinite dimensional Grassmann manifold, in Nonlinear Partial Differential Equations in Applied Sciences, P.D. Lax, H. Fujita, G. Strang (eds.), North-Holland, 1982 Zbl0528.58020
  2. [Se-Wi] Segal, G., and Wilson, G., Loop groups and equations of KdV type, Publ. IHES61 (1985), 5-65. Zbl0592.35112MR783348
  3. [Ta1] Takasaki, K., Geometry of universal Grassmannian manifold from algebraic point of view, Reviews inMath. Phys.1 (1989), 1-46. Zbl0716.58001MR1041529
  4. [Ch] Chau, L.-L., Chiral fields, self-dual Yang-Mills fields as integrable systems, and the role of the Kac-Moody algebra, in Nonlinear phenomena, K.B. Wolf (ed.), Lecture Notes in Physics vol. 189, Splinger-Verlag, 1983. Zbl0582.35095MR727859
  5. [Bo] Boyer, C.P., The geometry of self-dual Einstein spaces, in Nonlinear Phenomena, K.B. Wolf (ed.), Lecture Notes in Physics vol. 189, Springer, 1983. MR727857
  6. [Wal] Ward, R.S., On self-dual gauge fields, Phys. Lett.61A (1977), 81-82. Zbl0964.81519MR443823
  7. [Pe] Penrose, R., Nonlinear gravitons and curved twistor theory, Gen. Rel. Grav.7 (1976), 31-52. Zbl0354.53025MR439004
  8. [Be-Za] Belavin, A.A. and Zakharov, V.E., Yang-Mills equations as inverse scattering problem, Phys. Lett.73B (1978), 53-57. MR484164
  9. [Ch-Pr-Si] Chau, L.-L., Prasad, M.K. and Sinha, A., Some aspects of the linear system for self-dual Yang-Mills fields, Phys. Rev.D24 (1981), 1574-1580. MR628859
  10. [Fo-Ho-Pa] Forgács, P., Horváth, Z., and Palla, L., Towards complete integrability of the self-dual equations, Phys. Rev.D23 (1981), 1876- . MR610412
  11. [Po] Pohlmeyer, K., On the Lagrangian theory of anti-self-dual fields in four dimensional Euclidean space, Commun. Math. Phys.72 (1980), 37-47. MR573816
  12. [Wa2] Ward, R.S., Completely solvable gauge-field equations in dimension greater than four, Nucl. Phys.B236 (1984), 381-396. MR739812
  13. [Co-Go-Ke] Corrigan, E., Goddard, P., and Kent, A., Some comments on the ADHM construction in 4k dimensions, Commun. Math. Phys.100 (1985), 1-13. Zbl0587.58059MR796159
  14. [At-Hi-Dr-Ma] Atiyah, M.F., Hitchin, N.J., Drinfeld, V.G. and Manin, Yu. I., Construction of instantons, Phys. Lett.65A (1978), 185-187; Atiyah, M.F., Geometry of gauge fields, Scuola Norm. Sup., Pisa, 1979. Zbl0424.14004MR598562
  15. [Ya] Yang, C.N., Condition of self-duality for SU(2) gauge fields on Euclidean four-dimensional space, Phys. Rev. Lett.38 (1977), 1377-1379. MR475357
  16. [P1] Plebanski, J.F., Some solutions of complex Einstein equations, J. Math. Phys.16 (1975), 2395-2402. MR386609
  17. [Hi-Ka-Li-Ro] Hitchin, N.J., Kahlhede, A., Lindström, U., and Roček, M., Hyperkähler metrics and supersymmetry, Commun. Math. Phys.108 (1987), 535-589. Zbl0612.53043MR877637
  18. [Tw1] Lerner, D.E., and Sommers, P.D. (ed.), Complex manifold techniques in theoretial physics, Pitman, 1978. Zbl0407.00015
  19. [Tw2] Hughston, L.P., and Ward, R.S. (ed.), Advances in twistor theory, Pitman, 1979. Zbl0463.53039MR578487
  20. [Tw3] Doebner, H.D., and Palev, T.D. (ed.), Twistor geometry and non-linear systems, Lecture Notes in Mathematics vol. 970, Springer-Verlag, 1982. Zbl0488.00016MR699798
  21. [Tw4] Ward, R.S., and Wells, R.O., Twistor geometry and field theory, Cambridge University Press, 1989. Zbl0714.53059MR1054377
  22. [Tw5] Mason, L.J., and hughston, L.P. (ed.), Further advances in twistor theory, Pitman, 1990. 
  23. [Tw6] Baily, T.N., and Boston, R.J. (ed.), Twistors in mathematics and physics, London Mathematical Society Lecture Note Series vol. 156, Cambridge University Press, 1990. Zbl0702.53003MR1089905
  24. [Ka] Kac, V.G., Infinite dimensional Lie algebras, Cambridge Univ. Press, 1985. Zbl0574.17010MR823672
  25. [Pr-Se] Pressley, A.N., and Segal, G.B., Loop groups and their representations, Oxford University Press, 1986. Zbl0618.22011MR900587
  26. [Da-Ji-Mi-Ka] Date, E., Jimbo, M., Kashiwara, M., Miwa, T., Transformation theory for soliton equations III-VI, J. Phys. Soc. Japan50 (1982), 3806-3812, 3813-3818; Phyica4D (1982), 343-365; Publ. RIMS., Kyoto Univ., 18 (1982), 1077-1110. Zbl0571.35099
  27. [Ue-Na] Ueno, K., Nakamura, Y., Transformation theory for anti-self-dual equations and the Riemann-Hilbert problem, Phys. Lett.109B (1982), 273-278. MR647108
  28. (Ch-Ge-WuJ Chau, L.-L., Ge, M.-L., Wu, Y.-S., Kac-Moody algebra in the self-dual Yang-Mills equation, Phys. Rev.D25 (1982), 1086-1094. MR646392
  29. [Do] Dolan, L., A new symmetry group of real self-dual Yang-Mills theory, Phys. Lett.113B (1982), 387-390. MR664383
  30. [Bo-P1] Boyer, C.P., Plebanski, J.F., An infinite hierarchy of conservation laws and nonlinear superposition principles for self-dual Einstein spaces, J. Math. Phys.26 (1985), 229-234. Zbl0555.53044MR776490
  31. [Ta2] Takasaki, K., A new approach to the self-dual Yang-Mills equations, Commun. Math. Phys.94 (1984), 35-59; Hierarchy structure in integrable systems of gauge fields and underlying Lie algebras, Commun. Math. Phys.127 (1990), 225-238. Zbl0692.58044MR763761
  32. [Ta3] Takasaki, K., An infinite number of hidden variables in hyper-Kähler metrics, J. Math. Phys.30 (1989),1515-1521; Symmetries of hyper-Kähler (or Poisson gauge field) hierarchy, J. Math. Phys.31 (1990), 1877-1888. Zbl0683.53017MR1002256
  33. [Le-Mu] Leznov, A.N., Mukhtarov, M.A., Deformation of algebras and solutions of self-duality equation, J. Math. Phys.28 (1987), 2574-2578. Zbl0663.35078MR913409
  34. [Le-Sa] Leznov, A.N., Saveliev, V.M., Exactly and completely integrable nonlinear dynamical sysmtems, Acta Applicandae Mathematicae16 (1989), 1-74. Zbl0683.58025MR1011902
  35. [Ta4] Takasaki, K., Integrable systems in gauge theory, Kähler geometry and super KP hierarchy - symmetries and algebraic point of view, talk at ICM-90, Kyoto, August, 1990; Kyoto University preprint RIMS-714, September, 1990. MR1159305
  36. [Bi-F1-Sa] Biran, B., Floratos, E.G.F., and Savvidy, G.K., The self-dual closed membranes, Phys. Lett.198B (1987), 329-332. MR918701
  37. [F1-Le] Floratos, F.G., and Leontaris, G.K., Integrability of the self-dual membranes in (4+1) dimensions and the Toda lattice, Phys. Lett.223B (1989), 153-156. MR1001109
  38. [Gr-Tz] Grabowski, F., and Tze, C.-H., Generalized self-dual bosonic membranes, vector corss-products and analyticity in higher dimensions, Phys. Lett.224B (1989), 259-264. MR1003764
  39. [Za] Zaikov, R.P., Self-duality in the theory of the bosonic p-branes, Phys. Lett.211B (1988), 281-284. MR958278
  40. [Ar-Sa] Arakelyan, T.A., and Savvidy, G.K., Cocycles of area-preserving diffeomorphisms and anomalies in the theory of relativistic surfaces, Phys. Lett.214B (1988), 350-356. MR969983
  41. [Ba-Po-Se] Bars, I., Pope, C.N., and Sezgin, E., Central extensions of area preserving membrane algebras, Phys. Lett.210B (1988), 85-91. MR959497
  42. [F1-I1] Floratos, F.G., and Iliopoulos, A note on the classical symmetries of the closed bosonic membranes, J., Phys. Lett.201B (1988), 237-240. MR926871
  43. [Ho1] Hoppe, J., DiffAT2, and the curvature of some infinite dimensional manifolds, Phys. Lett.215B (1988), 706-710. MR973588
  44. [Ho2] Hoppe, J., Diffeomorphism groups, quantization, and SU(oo), Int. J. Mod. Phys.A4 (19) (1989), 5235-5248. Zbl0707.17018MR1020144
  45. [Ba1] Bakas, I., The large-N limit of extended conformal symmetries, Phys. Lett.228B (1989), 57-63. MR1015910
  46. [Ba2] Bakas, I., The structure of the W∞ algebra, Maryland University preprint UMD-90-085, November, 1980. 
  47. [Oo-Va] Ooguri, H., and Vafa, C., Self-duality and N = 2 string magic, Univ. Chicago preprint, EFI-90-24, April 1990. Zbl1020.81792MR1063040
  48. [Ya-Ch] Yamagishi, K., and Chappline, F., Induced 4d self-dual quantum gravity:- W∞ algebraic approach -, Laurence Livermore National Laboratory preprint, April 1990. Zbl0736.17040
  49. [Pa1] Park, Q-Han, Self-dual gravity as a large-N limit of the 2D non-linear sigma model, Phys. Lett.238B (1990), 287-290. MR1050734
  50. [Pa2] Park, Q-Han, Extended conformal symmetries in real heavens, Phys. Lett.236B (1990), 429-432. MR1041737
  51. [Wi] Witten, E., Surprises with topological field theorries, Advanced Study Institute preprint IASSNS-HEP-90/37, April, 1990. 
  52. [Bo-Fi] Boyer, C., and Finley, J.D., Killing vectors in self-dual, Euclidean Einstein spaces, J. Math. Phys.23 (1982), 1126-1128. Zbl0484.53051MR660020
  53. [Ge-Da] Gegenberg, J.D., and Das, A., Stationary Riemannian space-times with self-dual curvature, Gen. Rel. Grav.16 (1984), 817-829. Zbl0545.53039MR759978
  54. [Hi] Hitchin, N.J., Complex manifolds and Einstein's equations, in Twistor Geometry and Non-linear Systems, H.D. Doebner and T. Weber (eds.), Lecture Notes in Mathematics vol. 970, pp.2-42, Springer-Verlag1982. Zbl0507.53025MR699802
  55. [Jo-To] Jones, P.E., and Tod, K.P., Minitwistor spaces and Einstein-Weyl spaces, Class. Quantum Grav.2 (1985), 565-577. Zbl0575.53042MR795102
  56. [Wa3] Ward, R.S., Winstein-Weyl spaces and SU(∞) Toda fields, Class. Quantum Grav.7 (1990). L95-L98. Zbl0687.53044
  57. [LeBr] LeBrun, C., Explicit self-dual metrics on CP2 # ... # CP2, preprint, 1990. 
  58. [Sa-Ve] Saveliev, M.V., and Vershik, A.M., Continual analogues of contragredient Lie algebras, Commun. Math. Phys.126 (1989), 367-378; New examples of continuum graded Lie algebras, Phys. Lett.143A (1990), 121-128. Zbl0691.17012MR1027502

NotesEmbed ?


You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.


Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.