Scattering by two convex bodies

Mitsuru Ikawa

Séminaire Équations aux dérivées partielles (Polytechnique) (1991-1992)

  • page 1-9

How to cite

top

Ikawa, Mitsuru. "Scattering by two convex bodies." Séminaire Équations aux dérivées partielles (Polytechnique) (1991-1992): 1-9. <http://eudml.org/doc/112030>.

@article{Ikawa1991-1992,
author = {Ikawa, Mitsuru},
journal = {Séminaire Équations aux dérivées partielles (Polytechnique)},
keywords = {Helmholtz equation; Dirichlet problem; analytic continuation; distribution of poles of scattering matrices},
language = {eng},
pages = {1-9},
publisher = {Ecole Polytechnique, Centre de Mathématiques},
title = {Scattering by two convex bodies},
url = {http://eudml.org/doc/112030},
year = {1991-1992},
}

TY - JOUR
AU - Ikawa, Mitsuru
TI - Scattering by two convex bodies
JO - Séminaire Équations aux dérivées partielles (Polytechnique)
PY - 1991-1992
PB - Ecole Polytechnique, Centre de Mathématiques
SP - 1
EP - 9
LA - eng
KW - Helmholtz equation; Dirichlet problem; analytic continuation; distribution of poles of scattering matrices
UR - http://eudml.org/doc/112030
ER -

References

top
  1. [BGR] C. Bardos, J.C. Guillot and J. Ralston, La relation de Poisson pour l'équation des ondes dans un ouvert non borné. Application à la théorie de la diffusion, Comm.Partial Diff. Equ.7 (1982), 905-958. Zbl0496.35067MR668585
  2. [Gé] C. Gérard, Asymptotique des poles de la matrice de scattering pour deux obstacles strictement convexes, Bull.S.M.F. Tome 116 Mémoire n° 31 (1989). Zbl0654.35081MR998698
  3. [Ik 1] M. Ikawa, On the poles of the scattering matrix for two strictly convex obstacles, J.Math.Kyoto Univ.23 (1983), 127-194. Zbl0561.35060MR692733
  4. [Ik 2] M. Ikawa, Trapping obstacles with a sequence of poles of the scattering matrix converging to the real axis, Osaka J.Math.22 (1985), 657-689. Zbl0617.35102MR815439
  5. [Ik 3] M. Ikawa, On scattering by obstacles, Proceeding of ICM-90 (1991), 1145-1154. Zbl0757.35055MR1159299
  6. [V] B.R. Vainberg, On the short wave asymptotic behaviour of solutions of stationary problems and the asymptotic behaviour as t → ∞ of solutions of non-stationary problems, Russian Math.Surveys30-2 (1975), 1-58. Zbl0318.35006
  7. [Ve] W.A. Veech, "A second course in complex analysis," Benjamin, New York, 1967. Zbl0145.29901MR220903

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.