Scattering by two convex bodies
Séminaire Équations aux dérivées partielles (Polytechnique) (1991-1992)
- page 1-9
Access Full Article
topHow to cite
topIkawa, Mitsuru. "Scattering by two convex bodies." Séminaire Équations aux dérivées partielles (Polytechnique) (1991-1992): 1-9. <http://eudml.org/doc/112030>.
@article{Ikawa1991-1992,
author = {Ikawa, Mitsuru},
journal = {Séminaire Équations aux dérivées partielles (Polytechnique)},
keywords = {Helmholtz equation; Dirichlet problem; analytic continuation; distribution of poles of scattering matrices},
language = {eng},
pages = {1-9},
publisher = {Ecole Polytechnique, Centre de Mathématiques},
title = {Scattering by two convex bodies},
url = {http://eudml.org/doc/112030},
year = {1991-1992},
}
TY - JOUR
AU - Ikawa, Mitsuru
TI - Scattering by two convex bodies
JO - Séminaire Équations aux dérivées partielles (Polytechnique)
PY - 1991-1992
PB - Ecole Polytechnique, Centre de Mathématiques
SP - 1
EP - 9
LA - eng
KW - Helmholtz equation; Dirichlet problem; analytic continuation; distribution of poles of scattering matrices
UR - http://eudml.org/doc/112030
ER -
References
top- [BGR] C. Bardos, J.C. Guillot and J. Ralston, La relation de Poisson pour l'équation des ondes dans un ouvert non borné. Application à la théorie de la diffusion, Comm.Partial Diff. Equ.7 (1982), 905-958. Zbl0496.35067MR668585
- [Gé] C. Gérard, Asymptotique des poles de la matrice de scattering pour deux obstacles strictement convexes, Bull.S.M.F. Tome 116 Mémoire n° 31 (1989). Zbl0654.35081MR998698
- [Ik 1] M. Ikawa, On the poles of the scattering matrix for two strictly convex obstacles, J.Math.Kyoto Univ.23 (1983), 127-194. Zbl0561.35060MR692733
- [Ik 2] M. Ikawa, Trapping obstacles with a sequence of poles of the scattering matrix converging to the real axis, Osaka J.Math.22 (1985), 657-689. Zbl0617.35102MR815439
- [Ik 3] M. Ikawa, On scattering by obstacles, Proceeding of ICM-90 (1991), 1145-1154. Zbl0757.35055MR1159299
- [V] B.R. Vainberg, On the short wave asymptotic behaviour of solutions of stationary problems and the asymptotic behaviour as t → ∞ of solutions of non-stationary problems, Russian Math.Surveys30-2 (1975), 1-58. Zbl0318.35006
- [Ve] W.A. Veech, "A second course in complex analysis," Benjamin, New York, 1967. Zbl0145.29901MR220903
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.