Le comportement de la résolvante modifiée du laplacien pour des obstacles captifs

V. M. Petkov

Séminaire Équations aux dérivées partielles (Polytechnique) (1991-1992)

  • page 1-9

How to cite

top

Petkov, V. M.. "Le comportement de la résolvante modifiée du laplacien pour des obstacles captifs." Séminaire Équations aux dérivées partielles (Polytechnique) (1991-1992): 1-9. <http://eudml.org/doc/112035>.

@article{Petkov1991-1992,
author = {Petkov, V. M.},
journal = {Séminaire Équations aux dérivées partielles (Polytechnique)},
language = {fre},
pages = {1-9},
publisher = {Ecole Polytechnique, Centre de Mathématiques},
title = {Le comportement de la résolvante modifiée du laplacien pour des obstacles captifs},
url = {http://eudml.org/doc/112035},
year = {1991-1992},
}

TY - JOUR
AU - Petkov, V. M.
TI - Le comportement de la résolvante modifiée du laplacien pour des obstacles captifs
JO - Séminaire Équations aux dérivées partielles (Polytechnique)
PY - 1991-1992
PB - Ecole Polytechnique, Centre de Mathématiques
SP - 1
EP - 9
LA - fre
UR - http://eudml.org/doc/112035
ER -

References

top
  1. [BGR] C. Bardos, J.C. Guillot, J. Ralston, La relation de Poisson pour l'équation des ondes dans un ouvert non-borné. Applications à la théorie de diffusion, Comm. PDE, 7 (1982), 905-958. Zbl0496.35067MR668585
  2. [CPS] F. Cardoso, V. Petkov, L. Stoyanov, Singularities of the scattering kernel for generic obstacles, Ann. Inst. H. Poincaré (Physique théorique), 53 (1990), 445-466. Zbl0729.35099MR1096103
  3. [G] C. Gérard, Asymptotique des pôles de la matrice de scattering pour deux obstacles strictement convexes, Bulletin de S.M.F., Mémoire n° 31, 116 (1988). Zbl0654.35081MR998698
  4. [H] L. Hörmander, The Analysis of Linear Partial Differential Operators, vol. III, Pseudo-differential operators, Berlin; Springer, 1985. Zbl1115.35005
  5. [I1] M. Ikawa, Precise information on the poles of the scattering matrix for two strictly convex obstacles. J. Math. Kyoto Univ., 27 (1987), 69-102. Zbl0637.35068MR878491
  6. [I2] M. Ikawa, Decay of solutions of the wave equation in the exterior of several strictly convex bodies, Ann. Inst. Fourier, 38 (1988), 113-146. Zbl0636.35045MR949013
  7. [I3] M. Ikawa, On the existence of the poles of the scattering matrix for several convex bodies, Proc. Japan Acad., 64, Ser. A (1988), 91-93. Zbl0704.35113MR966394
  8. [LP] P. Lax and R. Phillips, Scattering Theory, New-York, Academic Press, 1967. Zbl0186.16301MR217440
  9. [MS] R. Melrose, J. Sjöstrand, Singularities in boundary value problems, I, Comm. Pure Appl. Math., 31 (1978), 593-617, II, 35 (1982), 129-168. Zbl0546.35083
  10. [P1] V. Petkov, High frequency asymptotics of the scattering amplitude for non-convex bodies. Comm. PDE, 5 (1980), 293-329. Zbl0435.35065MR562545
  11. [P2] V. Petkov, Les singularités du noyau de l'opérateur de diffusion pour des obstacles non-convexes, Séminaire EDP, Exposé VIII, Ecole Polytechnique, 1989-1990. Zbl0707.35092MR1073183
  12. [P3] V. Petkov, The behaviour of the modified resolvent of the Laplacian in the exterior of several convex obstacles, Preprint 1992. 
  13. [PS1] V. Petkov, L. Stoyanov, Periods of multiple reflecting geodesics and inverse spectral results, Amer. J. Math., 109 (1987), 619-668. Zbl0652.35027MR900034
  14. [PS2] V. Petkov, L. Stoyanov, Singularities of the scattering kernel and scattering invariants for several strictly convex obstacles, Trans. Amer. Math. Soc., 312 (1989), 203-235. Zbl0685.35083MR929661
  15. [PS3] V. Petkov, L. Stoyanov, Geometry of Reflecting Rays and Inverse Spectral Problems, John Wiley & Sons, Chichester, 1992. Zbl0761.35077MR1172998
  16. [R] J. Ralston, Solutions of the wave equation with localized energy, Comm. Pure Appl. Math., 22 (1969), 807-823. Zbl0209.40402MR254433
  17. [S1] L. Stoyanov, Nonexistence of generalized scattering rays and singularities of the scattering kernel for generic domains in R3, Proc. Amer. Math. Soc., 113 (1991), 847-856. Zbl0742.58056MR1070532
  18. [S2] L. Stoyanov, On the singularities of the scattering kernel, Preprint 1991. 
  19. [S3] L. Stoyanov, Continuity properties of the generalized geodesic flow and singularities of the scattering kernel, in preparation. 
  20. [V] B. Vainberg, Asymptotic Methods in Equations of Mathematical Physics, Gordon and Breach Sci. Publ. Ltd., 1988. Zbl0743.35001MR1054376

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.