Real and complex transversely symplectic Anosov flows of dimension five

Yong Fang

Séminaire de théorie spectrale et géométrie (2004-2005)

  • Volume: 23, page 105-114
  • ISSN: 1624-5458

Abstract

top
Nous présentons plusieurs résultats de rigidité concernant les flots d’Anosov admettant transversalement des structures symplectiques réelles ou complexes de dimension  5 .

How to cite

top

Fang, Yong. "Real and complex transversely symplectic Anosov flows of dimension five." Séminaire de théorie spectrale et géométrie 23 (2004-2005): 105-114. <http://eudml.org/doc/11205>.

@article{Fang2004-2005,
abstract = {Nous présentons plusieurs résultats de rigidité concernant les flots d’Anosov admettant transversalement des structures symplectiques réelles ou complexes de dimension $5$.},
author = {Fang, Yong},
journal = {Séminaire de théorie spectrale et géométrie},
language = {eng},
pages = {105-114},
publisher = {Institut Fourier},
title = {Real and complex transversely symplectic Anosov flows of dimension five},
url = {http://eudml.org/doc/11205},
volume = {23},
year = {2004-2005},
}

TY - JOUR
AU - Fang, Yong
TI - Real and complex transversely symplectic Anosov flows of dimension five
JO - Séminaire de théorie spectrale et géométrie
PY - 2004-2005
PB - Institut Fourier
VL - 23
SP - 105
EP - 114
AB - Nous présentons plusieurs résultats de rigidité concernant les flots d’Anosov admettant transversalement des structures symplectiques réelles ou complexes de dimension $5$.
LA - eng
UR - http://eudml.org/doc/11205
ER -

References

top
  1. M. Brunella, On transversely holomorphic flows I, Invent. Math., 126 (1996), 265–279. Zbl0873.57021MR1411132
  2. Y. Benoist, P. Foulon and F. Labourie, Flots d’Anosov à distributions de Liapounov différentiables. I, Ann. Inst. Henri Poincaré, 53 (1990), 395–412. Zbl0723.58040
  3. Y. Benoist, P. Foulon and F. Labourie, Flots d’Anosov à distributions stable et instable différentiables, J. Amer. Math. Soc., 5 (1992), 33–74. Zbl0759.58035
  4. G. Contreras, R. Iturriaga, G. P. Paternain and M. Paternain, Lagrangian graphs, minimizing measures and Mané’s critical values, GAFA, 8 (1998) 788–809. Zbl0920.58015
  5. S. Dumitrescu, Métriques riemanniennes holomorphesen petite dimension, Ann. Inst. Fourier, 51, 6 (2001), 1663–1690. Zbl1016.53051MR1871285
  6. Y. Fang, Structures géométriques rigides et systèmes dynamiques hyperboliques, ph.D. thesis, University of Paris-Sud. Web address: http://tel.archives-ouvertes.fr/tel-00008734/fr/ 
  7. Y. Fang, Geometric Anosov flows of dimension 5 with smooth distributions, to appear in Journal of the Institute of Mathematics of Jussieu. Web address: http://hal.ccsd.cnrs.fr/ccsd-00004411 Zbl1030.37022MR1979357
  8. Y. Fang, Smooth rigidity of uniformly quasiconformal Anosov flows, Ergod. Th. and Dynam. Sys, 24 (2004), 1937–1959. Zbl1127.37028MR2106772
  9. Y. Fang, On orbit equivalence of quasiconformal Anosov flows, soumitted. Web address: http://hal.ccsd.cnrs.fr/ccsd-00004412 
  10. R. Feres and A. Katok, invariant tensor fields of dynamical systems with pinched Lyapunov exponents and rigidity of geodesic flows, Ergod. Th. and Dynam. Sys., 9 (1989), 427–432. Zbl0667.58050MR1016661
  11. É. Ghys, Flots d’Anosov dont les feuilletages stables sont différentiables, Ann. Scient. Éc. Norm. Sup. (4), 20 (1987), 251–270. Zbl0663.58025
  12. É. Ghys, Holomorphic Anosov flows, Invent. math., 119 (1995), 585–614. Zbl0831.58041MR1317651
  13. É. Ghys, On transversely holomorphic flows II, Invent. Math., 126 (1996) 281–286. Zbl0873.57022MR1411133
  14. B. Hasselblatt and A. Katok, Introduction to the modern theory of dynamical systems, Encyclopedia of Mathematics and its Applications, vol 54, 1995. Zbl0878.58020MR1326374
  15. S. Hurder and A. Katok, Differentiability, rigidity and Godbillon-Vey classes for Anosov flows, Pub. I.H.É.S., 72 (1990), 5–61. Zbl0725.58034MR1087392
  16. M. Inoue, S. Kobayashi and T. Ochiai, Holomorphic affine connections on compact complex surfaces, J. Fac. Sci. Univ. Tokyo, 27(2) (1980), 247-264. Zbl0467.32014MR586449
  17. M. Kanai, Geodesic flows of negatively curved manifolds with smooth stable and instable foliations, Ergod. Th. and Dynam. Sys., 8 (1988), 215–240. Zbl0634.58020MR951270
  18. V. Sadovskaya, On uniformly quasiconformal Anosov systems, nto appear in Math. Res. Lett. Zbl1081.37015MR2150895

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.