Real and complex transversely symplectic Anosov flows of dimension five
Séminaire de théorie spectrale et géométrie (2004-2005)
- Volume: 23, page 105-114
- ISSN: 1624-5458
Access Full Article
topAbstract
topHow to cite
topFang, Yong. "Real and complex transversely symplectic Anosov flows of dimension five." Séminaire de théorie spectrale et géométrie 23 (2004-2005): 105-114. <http://eudml.org/doc/11205>.
@article{Fang2004-2005,
abstract = {Nous présentons plusieurs résultats de rigidité concernant les flots d’Anosov admettant transversalement des structures symplectiques réelles ou complexes de dimension $5$.},
author = {Fang, Yong},
journal = {Séminaire de théorie spectrale et géométrie},
language = {eng},
pages = {105-114},
publisher = {Institut Fourier},
title = {Real and complex transversely symplectic Anosov flows of dimension five},
url = {http://eudml.org/doc/11205},
volume = {23},
year = {2004-2005},
}
TY - JOUR
AU - Fang, Yong
TI - Real and complex transversely symplectic Anosov flows of dimension five
JO - Séminaire de théorie spectrale et géométrie
PY - 2004-2005
PB - Institut Fourier
VL - 23
SP - 105
EP - 114
AB - Nous présentons plusieurs résultats de rigidité concernant les flots d’Anosov admettant transversalement des structures symplectiques réelles ou complexes de dimension $5$.
LA - eng
UR - http://eudml.org/doc/11205
ER -
References
top- M. Brunella, On transversely holomorphic flows I, Invent. Math., 126 (1996), 265–279. Zbl0873.57021MR1411132
- Y. Benoist, P. Foulon and F. Labourie, Flots d’Anosov à distributions de Liapounov différentiables. I, Ann. Inst. Henri Poincaré, 53 (1990), 395–412. Zbl0723.58040
- Y. Benoist, P. Foulon and F. Labourie, Flots d’Anosov à distributions stable et instable différentiables, J. Amer. Math. Soc., 5 (1992), 33–74. Zbl0759.58035
- G. Contreras, R. Iturriaga, G. P. Paternain and M. Paternain, Lagrangian graphs, minimizing measures and Mané’s critical values, GAFA, 8 (1998) 788–809. Zbl0920.58015
- S. Dumitrescu, Métriques riemanniennes holomorphesen petite dimension, Ann. Inst. Fourier, 51, 6 (2001), 1663–1690. Zbl1016.53051MR1871285
- Y. Fang, Structures géométriques rigides et systèmes dynamiques hyperboliques, ph.D. thesis, University of Paris-Sud. Web address: http://tel.archives-ouvertes.fr/tel-00008734/fr/
- Y. Fang, Geometric Anosov flows of dimension with smooth distributions, to appear in Journal of the Institute of Mathematics of Jussieu. Web address: http://hal.ccsd.cnrs.fr/ccsd-00004411 Zbl1030.37022MR1979357
- Y. Fang, Smooth rigidity of uniformly quasiconformal Anosov flows, Ergod. Th. and Dynam. Sys, 24 (2004), 1937–1959. Zbl1127.37028MR2106772
- Y. Fang, On orbit equivalence of quasiconformal Anosov flows, soumitted. Web address: http://hal.ccsd.cnrs.fr/ccsd-00004412
- R. Feres and A. Katok, invariant tensor fields of dynamical systems with pinched Lyapunov exponents and rigidity of geodesic flows, Ergod. Th. and Dynam. Sys., 9 (1989), 427–432. Zbl0667.58050MR1016661
- É. Ghys, Flots d’Anosov dont les feuilletages stables sont différentiables, Ann. Scient. Éc. Norm. Sup. (4), 20 (1987), 251–270. Zbl0663.58025
- É. Ghys, Holomorphic Anosov flows, Invent. math., 119 (1995), 585–614. Zbl0831.58041MR1317651
- É. Ghys, On transversely holomorphic flows II, Invent. Math., 126 (1996) 281–286. Zbl0873.57022MR1411133
- B. Hasselblatt and A. Katok, Introduction to the modern theory of dynamical systems, Encyclopedia of Mathematics and its Applications, vol 54, 1995. Zbl0878.58020MR1326374
- S. Hurder and A. Katok, Differentiability, rigidity and Godbillon-Vey classes for Anosov flows, Pub. I.H.É.S., 72 (1990), 5–61. Zbl0725.58034MR1087392
- M. Inoue, S. Kobayashi and T. Ochiai, Holomorphic affine connections on compact complex surfaces, J. Fac. Sci. Univ. Tokyo, 27(2) (1980), 247-264. Zbl0467.32014MR586449
- M. Kanai, Geodesic flows of negatively curved manifolds with smooth stable and instable foliations, Ergod. Th. and Dynam. Sys., 8 (1988), 215–240. Zbl0634.58020MR951270
- V. Sadovskaya, On uniformly quasiconformal Anosov systems, nto appear in Math. Res. Lett. Zbl1081.37015MR2150895
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.