Correspondance de D -modules et transformation de Penrose

A. d'Agnolo; P. Schapira

Séminaire Équations aux dérivées partielles (Polytechnique) (1992-1993)

  • page 1-10

How to cite


d'Agnolo, A., and Schapira, P.. "Correspondance de $D$-modules et transformation de Penrose." Séminaire Équations aux dérivées partielles (Polytechnique) (1992-1993): 1-10. <>.

author = {d'Agnolo, A., Schapira, P.},
journal = {Séminaire Équations aux dérivées partielles (Polytechnique)},
keywords = {-modules; linear differential operators with holomorphic coefficients},
language = {fre},
pages = {1-10},
publisher = {Ecole Polytechnique, Centre de Mathématiques},
title = {Correspondance de $D$-modules et transformation de Penrose},
url = {},
year = {1992-1993},

AU - d'Agnolo, A.
AU - Schapira, P.
TI - Correspondance de $D$-modules et transformation de Penrose
JO - Séminaire Équations aux dérivées partielles (Polytechnique)
PY - 1992-1993
PB - Ecole Polytechnique, Centre de Mathématiques
SP - 1
EP - 10
LA - fre
KW - -modules; linear differential operators with holomorphic coefficients
UR -
ER -


  1. [1] R.J. Baston, M.G. Eastwood, The Penrose transform: its interaction with representation theory. Oxford Univ. Press (1989) Zbl0726.58004MR1038279
  2. [2] A. D'Agnolo, P. Schapira, The Penrose correspondence for sheaves and D-modules. To appear 
  3. [3] M.G. Eastwood, The generalized Penrose-Ward transform. Math. Proc. Camb. Phil. Soc.97 (1985) Zbl0581.32035MR764506
  4. [4] M.G. Eastwood, R. Penrose, R.O. WellsJr., Cohomology and massless fields. Comm. Math. Phys.78 (1981) Zbl0465.58031MR603497
  5. [5] M. Kashiwara, B-functions and holonomic systems. Invent. Math.38 (1976) Zbl0354.35082MR430304
  6. [6] M. Kashiwara, Systems of microdifferential equationsProgress in Math.34 (1984) Zbl0521.58057MR725502
  7. [7] M. Kashiwara, T. Oshima, Systems of differential equations with Regular Singularities and their boundary value problems, Ann. of Math.106 (1977) pp. 145-200. Zbl0358.35073MR482870
  8. [8] M. Kashiwara, P. Schapira, Sheaves on manifolds. Springer BerlinHeidelbergNew York292 (1990) Zbl0709.18001MR1074006
  9. [9] Yu. I. Manin, Gauge field theory and complex geometry. Springer BerlinHeidelbergNew York289 (1988) Zbl0641.53001MR954833
  10. [10] M. Saito, Induced D-modules and differential complexes. Bull. Soc. math. France117 (1989) Zbl0705.32005MR1020112
  11. [11] M. Sato, T. Kawai, M. Kashiwara, Hyperfunctions and pseudo-differential equations. In Hyperfunctions and pseudo-differential equations. H. Komatsu ed., Proceedings Katata 1971. Lect. Notes in Math. Springer BerlinHeidelbergNew York287 (1973) Zbl0277.46039MR420735
  12. [12] P. Schapira, Microdifferential systems in the complex domain. Springer BerlinHeidelbergNew York269 (1985) Zbl0554.32022MR774228
  13. [13] J.-P. Schneiders, Un théorème de dualité relative pour les modules différentielsC.R. Acad. Sci. Paris303 (1986) 235-238. Zbl0605.14016MR860825
  14. [14] R.S. Ward, R.O. Wells Jr., Twistor geometry and field theory Cambridge monographs on mathematical physics (1990) Zbl0729.53068MR1054377
  15. [15] R.O. WellsJr., Complex manifolds and mathematical physics. Bulletin of the A.M.S.1, 2 (1979) Zbl0444.32014MR520077
  16. [16] R.O. WellsJr., Hyperfunction solutions of the zero-rest-mass field equationsCommun. Math. Phys.78 (1981) Zbl0465.58032MR606464

NotesEmbed ?


You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.


Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.