Correspondance de -modules et transformation de Penrose
Séminaire Équations aux dérivées partielles (Polytechnique) (1992-1993)
- page 1-10
Access Full Article
topHow to cite
topd'Agnolo, A., and Schapira, P.. "Correspondance de $D$-modules et transformation de Penrose." Séminaire Équations aux dérivées partielles (Polytechnique) (1992-1993): 1-10. <http://eudml.org/doc/112062>.
@article{dAgnolo1992-1993,
author = {d'Agnolo, A., Schapira, P.},
journal = {Séminaire Équations aux dérivées partielles (Polytechnique)},
keywords = {-modules; linear differential operators with holomorphic coefficients},
language = {fre},
pages = {1-10},
publisher = {Ecole Polytechnique, Centre de Mathématiques},
title = {Correspondance de $D$-modules et transformation de Penrose},
url = {http://eudml.org/doc/112062},
year = {1992-1993},
}
TY - JOUR
AU - d'Agnolo, A.
AU - Schapira, P.
TI - Correspondance de $D$-modules et transformation de Penrose
JO - Séminaire Équations aux dérivées partielles (Polytechnique)
PY - 1992-1993
PB - Ecole Polytechnique, Centre de Mathématiques
SP - 1
EP - 10
LA - fre
KW - -modules; linear differential operators with holomorphic coefficients
UR - http://eudml.org/doc/112062
ER -
References
top- [1] R.J. Baston, M.G. Eastwood, The Penrose transform: its interaction with representation theory. Oxford Univ. Press (1989) Zbl0726.58004MR1038279
- [2] A. D'Agnolo, P. Schapira, The Penrose correspondence for sheaves and D-modules. To appear
- [3] M.G. Eastwood, The generalized Penrose-Ward transform. Math. Proc. Camb. Phil. Soc.97 (1985) Zbl0581.32035MR764506
- [4] M.G. Eastwood, R. Penrose, R.O. WellsJr., Cohomology and massless fields. Comm. Math. Phys.78 (1981) Zbl0465.58031MR603497
- [5] M. Kashiwara, B-functions and holonomic systems. Invent. Math.38 (1976) Zbl0354.35082MR430304
- [6] M. Kashiwara, Systems of microdifferential equationsProgress in Math.34 (1984) Zbl0521.58057MR725502
- [7] M. Kashiwara, T. Oshima, Systems of differential equations with Regular Singularities and their boundary value problems, Ann. of Math.106 (1977) pp. 145-200. Zbl0358.35073MR482870
- [8] M. Kashiwara, P. Schapira, Sheaves on manifolds. Springer BerlinHeidelbergNew York292 (1990) Zbl0709.18001MR1074006
- [9] Yu. I. Manin, Gauge field theory and complex geometry. Springer BerlinHeidelbergNew York289 (1988) Zbl0641.53001MR954833
- [10] M. Saito, Induced D-modules and differential complexes. Bull. Soc. math. France117 (1989) Zbl0705.32005MR1020112
- [11] M. Sato, T. Kawai, M. Kashiwara, Hyperfunctions and pseudo-differential equations. In Hyperfunctions and pseudo-differential equations. H. Komatsu ed., Proceedings Katata 1971. Lect. Notes in Math. Springer BerlinHeidelbergNew York287 (1973) Zbl0277.46039MR420735
- [12] P. Schapira, Microdifferential systems in the complex domain. Springer BerlinHeidelbergNew York269 (1985) Zbl0554.32022MR774228
- [13] J.-P. Schneiders, Un théorème de dualité relative pour les modules différentielsC.R. Acad. Sci. Paris303 (1986) 235-238. Zbl0605.14016MR860825
- [14] R.S. Ward, R.O. Wells Jr., Twistor geometry and field theory Cambridge monographs on mathematical physics (1990) Zbl0729.53068MR1054377
- [15] R.O. WellsJr., Complex manifolds and mathematical physics. Bulletin of the A.M.S.1, 2 (1979) Zbl0444.32014MR520077
- [16] R.O. WellsJr., Hyperfunction solutions of the zero-rest-mass field equationsCommun. Math. Phys.78 (1981) Zbl0465.58032MR606464
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.