Problème aux limites pour le système de Vlasov-Maxwell

M. Bezard

Séminaire Équations aux dérivées partielles (Polytechnique) (1992-1993)

  • page 1-17

How to cite

top

Bezard, M.. "Problème aux limites pour le système de Vlasov-Maxwell." Séminaire Équations aux dérivées partielles (Polytechnique) (1992-1993): 1-17. <http://eudml.org/doc/112067>.

@article{Bezard1992-1993,
author = {Bezard, M.},
journal = {Séminaire Équations aux dérivées partielles (Polytechnique)},
keywords = {conservation theorems; global solution; iterative scheme},
language = {fre},
pages = {1-17},
publisher = {Ecole Polytechnique, Centre de Mathématiques},
title = {Problème aux limites pour le système de Vlasov-Maxwell},
url = {http://eudml.org/doc/112067},
year = {1992-1993},
}

TY - JOUR
AU - Bezard, M.
TI - Problème aux limites pour le système de Vlasov-Maxwell
JO - Séminaire Équations aux dérivées partielles (Polytechnique)
PY - 1992-1993
PB - Ecole Polytechnique, Centre de Mathématiques
SP - 1
EP - 17
LA - fre
KW - conservation theorems; global solution; iterative scheme
UR - http://eudml.org/doc/112067
ER -

References

top
  1. [1] Agmon, Douglas, Nirenberg, Estimates near the boundary of solutions of elliptic partial differential equations satisfying general boundary conditions, I. CPAM12 (1959), pp. 623-726, II. CPAM17 (1964), pp 35-92. Zbl0123.28706MR162050
  2. [2] Alinhac, Existence d'ondes de raréfaction pour de systèmes quasilinéaires hyperboliques multidimensionnels, CPDE14 (1989), pp 173-230. Zbl0692.35063MR976971
  3. [3] Asano, On local solutions of the initial valve problem for the Vlasov-Maxwell system, CMP106 (1986), pp 551-568. Zbl0631.76090MR860309
  4. [4] Bardos-Degond, Global existence for the Vlasov-Poisson equation in 3-space variable with small initial data, Ann. Inst. H. Poincaré, Anal. Inst. H. Poincaré, Anal. Nonlinéaire2 (1985), pp. 101-118. Zbl0593.35076MR794002
  5. [5] Batt, Global symmetric solutions of the initial value problem of stellar dynamic, J. diff. eq.25 (1977), pp. 342-364. Zbl0366.35020MR487082
  6. [6] Bezard, Problème de Riemann généralisé pour un système de lois de conservation multidimensionnel vraiment non linéaire. Proceedings "Journées EDP St. Jean de Monts" Ed. Ecole Polytechnique, France + manuscrit. Zbl0704.35092
  7. [7] Cessenat, Théorèmes de trace LP pour les espaces de fonction de la neutronique, C.R. Ac. Sci., Paris299 (1986), pp. 831-834, et C.R. Ac. Sci. Paris300 (1985), pp. 89-92. Zbl0648.46028MR777741
  8. [8] Chazarain-Piriou, Introduction à la théorie des équations aux dérivées partielles linéaires. Gauthier Villars1981. Zbl0446.35001MR598467
  9. [9] Dautray-Lions, Analyse mathématique et calcul numérique pour les sciences et les techniques, 3 vol. Masson, 1983. Zbl0642.35001
  10. [10] Degond, Régularité des solutions des équations cinétiques en physique des plasmas. Séminaire EDP1985-1986, Ecole Polytechnique, France. Zbl0613.35070
  11. [11] Degond-Raviart, An analysis of the Darwin model of approximation to Maxwell's equation, Preprint CMAP, Ecole Polytechnique, n°213, Mars 1990. Zbl0755.35137
  12. [12] Di Perna-Lions, On Fokker-Planck-Boltzmann equation, CMP120 (1988), pp. 1-23. Zbl0671.35068MR972541
  13. [13] Di Perna-Lions, On the Cauchy problem for Boltzmann equation: global existence and weak stability, Ann. Math.130 (1989), pp. 321-366. Zbl0698.45010MR1014927
  14. [14] Di Perna-Lions, Solutions globales pour les équations de Vlasov-Poisson, C.R. Acad. Sci.307 (1988), pp. 655-658. Zbl0682.35022MR967806
  15. [15] Di Perna-Lions, Global weak solutions of Vlasov-Maxwell systems, CPAM42 (1989), pp 729-757. Zbl0698.35128MR1003433
  16. [16] Friederichs, Well-posed problems of mathematical physics, Mimeographed Lecture Notes, NYU. 
  17. [17] Friederichs, Symmetric positive systems of differential equations, CPAM 11 (1959), pp. 333-418. Zbl0083.31802
  18. [18] Gårding, Le problème de la dérivée oblique pour l'équation des ondes, C.R. Acad. Sci. Paris, 285 (1977), pp. 773-775, + Rectifications CRAS285 (1977), p.1199. Zbl0386.35024
  19. [19] Glassey-Strauss, Singularity formation in a collisionless plasma could occur only at high velocities, Arch. Rat. Mech. Anal, 92 (1986), pp. 59-90. Zbl0595.35072MR816621
  20. [20] Greengard-Raviart, A boundary value problem for the stationary Vlasov-Poisson equations: the plane diode, CPAM 43 (1990), pp. 473-507. Zbl0721.35084MR1047333
  21. [21] Gués, Problème mixte hyperbolique quasi-linéaire caractéristique, CPDE15 (1990), pp. 595-646. Zbl0712.35061MR1070840
  22. [22] Hamdache, Problème aux limites pour l'équation de Boltzmann, existence globale de solutions, CPDE13 (1988), pp. 813-845. Zbl0668.76090MR940959
  23. [23] Haus-Melcher, Electromagnetic fields and energy, Englewood Cliffs, Prentice Hall. 
  24. [24] Hörmander, The analysis of linear partial differential operators, 4 vol. Springer. 
  25. [25] Jackson, Classical electrodynamics, Wiley. Zbl0114.42903
  26. [26] Kato, Perturbation theory for linear operators, Springer. Zbl0148.12601
  27. [27] Kreiss, Initial boundary value problems for hyperbolic systems, CPAM, 23 (1970), pp. 277-298. Zbl0193.06902MR437941
  28. [28] Lawson, The physics of charged particle beams, Oxford Clarendon Press. 
  29. [29] J-L. Lions, Perturbation singulières dans les problèmes aux limites, et contrôle optimal, LNM323, Springer. Zbl0268.49001
  30. [30] P-L. Lions, Kinetic equations, Lecture ICM, Kyoto90. Zbl0806.35143
  31. [31] Majda-Osher, Initial boundary value problems for hyperbolic equations with uniformly characteristic boundary, CPAM, 28 (1975), pp. 607-695. Zbl0314.35061MR410107
  32. [32] Nishida-Rauch, Local existence for smooth inviscid compressible flows in bounded domains, Manuscript (1985). 
  33. [33] Panofsky-Phillips, Classical electricity and magnetism, Addison Wesley. Zbl0122.21401
  34. [34] Poupaud, Solutions stationnaires des équations de Vlasov-Poisson, C.R. Ac. Sci.Paris311 (1990), pp. 307-312. Zbl0711.35139MR1071632
  35. [35] Poupaud, Boundary value problems for the stationary Vlasov-Maxwell systems, Preprint Nice1991. Zbl0785.35020
  36. [36] Rauch, Symmetric positive systems with boundary characteristics of constant multiplicity, Trans. AMS, 291, (1985), pp. 167-187. Zbl0549.35099MR797053
  37. [37] Raviart, Approximate models for Maxwell's system and applications, Preprint, CMAP, Ecole Polytechnique, No 227. 
  38. [38] Rendal-Rein, On Vlasov-Einstein, Preprint. 
  39. [39] Sakamoto, Mixed problems for hyperbolic equations, I-II Math. J. Kyoto Univ. pp. 349-373; 403-417, vol 10 (1970). Zbl0203.10001
  40. [40] Schochet, The compressible Euler equations in a bounded domain: existence of solution and incompressible limit, CMP106 (1986), pp. 69-75. Zbl0612.76082
  41. [41] Strauss, Nonlinear wave equations, CBMS, Regional conference in Math No 73, AMS1990. Zbl0714.35003
  42. [42] Ukai, Solutions of the Boltzmann system in "Pattern and waves"Ed. Nishida-Mimura-Fuji, North Holland. 
  43. [43] Ukai-Asano, On the Vlasov-Poisson limit of the Vlasov-Maxwell equations, in " Pattern and waves" Ed. Nishida-Mimura-Fuji, North Holland. Zbl0623.35059
  44. [44] Ukai-Asano, Steady solutions of the Boltzmann equation for a gas flow past an obstacle, Archiv. Rat. Mech. Anal.84 (1983), pp. 269-291. Zbl0538.76070
  45. [45] Wollmann, An existence and uniqueness theorem for the Vlasov-Maxwell system, CPAM37 (1986), pp. 651-662. Zbl0592.45010
  46. [46] Yosida, Functional analysis, Springer. 
  47. [47] Beals-Protopopescu, Abstract time-dependant transport equations, J. Math. Anal. Appl. (1987), pp. 370-405. Zbl0657.45007MR872231
  48. [48] Bezard, Problème aux limites pour le système de Vlasov-Maxwell Preprint 1991, Soumis Archiv Rat. Mech. Anal. 
  49. [49] Bezard, Existence globale pour le système de Vlasov-Darwin. En préparation 
  50. [50] Guo, Global weak solutions of the Vlasov-Maxwell system. Preprint Brown University1991. 

NotesEmbed ?

top

You must be logged in to post comments.