Problème aux limites pour le système de Vlasov-Maxwell

M. Bezard

Séminaire Équations aux dérivées partielles (Polytechnique) (1992-1993)

  • page 1-17

How to cite

top

Bezard, M.. "Problème aux limites pour le système de Vlasov-Maxwell." Séminaire Équations aux dérivées partielles (Polytechnique) (1992-1993): 1-17. <http://eudml.org/doc/112067>.

@article{Bezard1992-1993,
author = {Bezard, M.},
journal = {Séminaire Équations aux dérivées partielles (Polytechnique)},
keywords = {conservation theorems; global solution; iterative scheme},
language = {fre},
pages = {1-17},
publisher = {Ecole Polytechnique, Centre de Mathématiques},
title = {Problème aux limites pour le système de Vlasov-Maxwell},
url = {http://eudml.org/doc/112067},
year = {1992-1993},
}

TY - JOUR
AU - Bezard, M.
TI - Problème aux limites pour le système de Vlasov-Maxwell
JO - Séminaire Équations aux dérivées partielles (Polytechnique)
PY - 1992-1993
PB - Ecole Polytechnique, Centre de Mathématiques
SP - 1
EP - 17
LA - fre
KW - conservation theorems; global solution; iterative scheme
UR - http://eudml.org/doc/112067
ER -

References

top
  1. [1] Agmon, Douglas, Nirenberg, Estimates near the boundary of solutions of elliptic partial differential equations satisfying general boundary conditions, I. CPAM12 (1959), pp. 623-726, II. CPAM17 (1964), pp 35-92. Zbl0123.28706MR162050
  2. [2] Alinhac, Existence d'ondes de raréfaction pour de systèmes quasilinéaires hyperboliques multidimensionnels, CPDE14 (1989), pp 173-230. Zbl0692.35063MR976971
  3. [3] Asano, On local solutions of the initial valve problem for the Vlasov-Maxwell system, CMP106 (1986), pp 551-568. Zbl0631.76090MR860309
  4. [4] Bardos-Degond, Global existence for the Vlasov-Poisson equation in 3-space variable with small initial data, Ann. Inst. H. Poincaré, Anal. Inst. H. Poincaré, Anal. Nonlinéaire2 (1985), pp. 101-118. Zbl0593.35076MR794002
  5. [5] Batt, Global symmetric solutions of the initial value problem of stellar dynamic, J. diff. eq.25 (1977), pp. 342-364. Zbl0366.35020MR487082
  6. [6] Bezard, Problème de Riemann généralisé pour un système de lois de conservation multidimensionnel vraiment non linéaire. Proceedings "Journées EDP St. Jean de Monts" Ed. Ecole Polytechnique, France + manuscrit. Zbl0704.35092
  7. [7] Cessenat, Théorèmes de trace LP pour les espaces de fonction de la neutronique, C.R. Ac. Sci., Paris299 (1986), pp. 831-834, et C.R. Ac. Sci. Paris300 (1985), pp. 89-92. Zbl0648.46028MR777741
  8. [8] Chazarain-Piriou, Introduction à la théorie des équations aux dérivées partielles linéaires. Gauthier Villars1981. Zbl0446.35001MR598467
  9. [9] Dautray-Lions, Analyse mathématique et calcul numérique pour les sciences et les techniques, 3 vol. Masson, 1983. Zbl0642.35001
  10. [10] Degond, Régularité des solutions des équations cinétiques en physique des plasmas. Séminaire EDP1985-1986, Ecole Polytechnique, France. Zbl0613.35070
  11. [11] Degond-Raviart, An analysis of the Darwin model of approximation to Maxwell's equation, Preprint CMAP, Ecole Polytechnique, n°213, Mars 1990. Zbl0755.35137
  12. [12] Di Perna-Lions, On Fokker-Planck-Boltzmann equation, CMP120 (1988), pp. 1-23. Zbl0671.35068MR972541
  13. [13] Di Perna-Lions, On the Cauchy problem for Boltzmann equation: global existence and weak stability, Ann. Math.130 (1989), pp. 321-366. Zbl0698.45010MR1014927
  14. [14] Di Perna-Lions, Solutions globales pour les équations de Vlasov-Poisson, C.R. Acad. Sci.307 (1988), pp. 655-658. Zbl0682.35022MR967806
  15. [15] Di Perna-Lions, Global weak solutions of Vlasov-Maxwell systems, CPAM42 (1989), pp 729-757. Zbl0698.35128MR1003433
  16. [16] Friederichs, Well-posed problems of mathematical physics, Mimeographed Lecture Notes, NYU. 
  17. [17] Friederichs, Symmetric positive systems of differential equations, CPAM 11 (1959), pp. 333-418. Zbl0083.31802
  18. [18] Gårding, Le problème de la dérivée oblique pour l'équation des ondes, C.R. Acad. Sci. Paris, 285 (1977), pp. 773-775, + Rectifications CRAS285 (1977), p.1199. Zbl0386.35024
  19. [19] Glassey-Strauss, Singularity formation in a collisionless plasma could occur only at high velocities, Arch. Rat. Mech. Anal, 92 (1986), pp. 59-90. Zbl0595.35072MR816621
  20. [20] Greengard-Raviart, A boundary value problem for the stationary Vlasov-Poisson equations: the plane diode, CPAM 43 (1990), pp. 473-507. Zbl0721.35084MR1047333
  21. [21] Gués, Problème mixte hyperbolique quasi-linéaire caractéristique, CPDE15 (1990), pp. 595-646. Zbl0712.35061MR1070840
  22. [22] Hamdache, Problème aux limites pour l'équation de Boltzmann, existence globale de solutions, CPDE13 (1988), pp. 813-845. Zbl0668.76090MR940959
  23. [23] Haus-Melcher, Electromagnetic fields and energy, Englewood Cliffs, Prentice Hall. 
  24. [24] Hörmander, The analysis of linear partial differential operators, 4 vol. Springer. 
  25. [25] Jackson, Classical electrodynamics, Wiley. Zbl0114.42903
  26. [26] Kato, Perturbation theory for linear operators, Springer. Zbl0148.12601
  27. [27] Kreiss, Initial boundary value problems for hyperbolic systems, CPAM, 23 (1970), pp. 277-298. Zbl0193.06902MR437941
  28. [28] Lawson, The physics of charged particle beams, Oxford Clarendon Press. 
  29. [29] J-L. Lions, Perturbation singulières dans les problèmes aux limites, et contrôle optimal, LNM323, Springer. Zbl0268.49001
  30. [30] P-L. Lions, Kinetic equations, Lecture ICM, Kyoto90. Zbl0806.35143
  31. [31] Majda-Osher, Initial boundary value problems for hyperbolic equations with uniformly characteristic boundary, CPAM, 28 (1975), pp. 607-695. Zbl0314.35061MR410107
  32. [32] Nishida-Rauch, Local existence for smooth inviscid compressible flows in bounded domains, Manuscript (1985). 
  33. [33] Panofsky-Phillips, Classical electricity and magnetism, Addison Wesley. Zbl0122.21401
  34. [34] Poupaud, Solutions stationnaires des équations de Vlasov-Poisson, C.R. Ac. Sci.Paris311 (1990), pp. 307-312. Zbl0711.35139MR1071632
  35. [35] Poupaud, Boundary value problems for the stationary Vlasov-Maxwell systems, Preprint Nice1991. Zbl0785.35020
  36. [36] Rauch, Symmetric positive systems with boundary characteristics of constant multiplicity, Trans. AMS, 291, (1985), pp. 167-187. Zbl0549.35099MR797053
  37. [37] Raviart, Approximate models for Maxwell's system and applications, Preprint, CMAP, Ecole Polytechnique, No 227. 
  38. [38] Rendal-Rein, On Vlasov-Einstein, Preprint. 
  39. [39] Sakamoto, Mixed problems for hyperbolic equations, I-II Math. J. Kyoto Univ. pp. 349-373; 403-417, vol 10 (1970). Zbl0203.10001
  40. [40] Schochet, The compressible Euler equations in a bounded domain: existence of solution and incompressible limit, CMP106 (1986), pp. 69-75. Zbl0612.76082
  41. [41] Strauss, Nonlinear wave equations, CBMS, Regional conference in Math No 73, AMS1990. Zbl0714.35003
  42. [42] Ukai, Solutions of the Boltzmann system in "Pattern and waves"Ed. Nishida-Mimura-Fuji, North Holland. 
  43. [43] Ukai-Asano, On the Vlasov-Poisson limit of the Vlasov-Maxwell equations, in " Pattern and waves" Ed. Nishida-Mimura-Fuji, North Holland. Zbl0623.35059
  44. [44] Ukai-Asano, Steady solutions of the Boltzmann equation for a gas flow past an obstacle, Archiv. Rat. Mech. Anal.84 (1983), pp. 269-291. Zbl0538.76070
  45. [45] Wollmann, An existence and uniqueness theorem for the Vlasov-Maxwell system, CPAM37 (1986), pp. 651-662. Zbl0592.45010
  46. [46] Yosida, Functional analysis, Springer. 
  47. [47] Beals-Protopopescu, Abstract time-dependant transport equations, J. Math. Anal. Appl. (1987), pp. 370-405. Zbl0657.45007MR872231
  48. [48] Bezard, Problème aux limites pour le système de Vlasov-Maxwell Preprint 1991, Soumis Archiv Rat. Mech. Anal. 
  49. [49] Bezard, Existence globale pour le système de Vlasov-Darwin. En préparation 
  50. [50] Guo, Global weak solutions of the Vlasov-Maxwell system. Preprint Brown University1991. 

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.