Distribution des résonances pour le système de l'élasticité
Séminaire Équations aux dérivées partielles (Polytechnique) (1993-1994)
- page 1-8
Access Full Article
topHow to cite
topVodev, G., and Stefanov, P.. "Distribution des résonances pour le système de l'élasticité." Séminaire Équations aux dérivées partielles (Polytechnique) (1993-1994): 1-8. <http://eudml.org/doc/112074>.
@article{Vodev1993-1994,
author = {Vodev, G., Stefanov, P.},
journal = {Séminaire Équations aux dérivées partielles (Polytechnique)},
keywords = {Neumann problem; eigenvalues; parametrix; exterior domains},
language = {fre},
pages = {1-8},
publisher = {Ecole Polytechnique, Centre de Mathématiques},
title = {Distribution des résonances pour le système de l'élasticité},
url = {http://eudml.org/doc/112074},
year = {1993-1994},
}
TY - JOUR
AU - Vodev, G.
AU - Stefanov, P.
TI - Distribution des résonances pour le système de l'élasticité
JO - Séminaire Équations aux dérivées partielles (Polytechnique)
PY - 1993-1994
PB - Ecole Polytechnique, Centre de Mathématiques
SP - 1
EP - 8
LA - fre
KW - Neumann problem; eigenvalues; parametrix; exterior domains
UR - http://eudml.org/doc/112074
ER -
References
top- [A] J.D. Achenbach, Wave Propagation in Elastic Solid, North Holland, New York, 1973. Zbl0657.73019
- [BLR] C. Bardos, G. Lebeau And J. Rauch, Scattering frequencies and Gevrey 3 singularities, Invent. Math.90(1987), 77-114. Zbl0723.35058MR906580
- [CP] F. Cardoso AND G. Popov, Rayleigh quasimodes in linear elasticity, Comm. P.D.E.17(1992), 1327-1367. Zbl0795.35067MR1179289
- [D] J. Duistermaat, Oscillatory integrals, Lagrange immersions and unfolding of singularities, Comm. Pure Appl. Math.27(1974), 207-281. Zbl0285.35010MR405513
- [G] C. Gérard, Asymptotique des poles de la matrice de scattering pour deux obstacles strictement convex, Bull. Soc. Math. France, Mémoire n. 31, 116, 1988. Zbl0654.35081MR998698
- [Gr] R. Gregory, The propagation of Rayleigh waves over curved surfaces at high frequency, Proc. Cambridge Philos. Soc.70(1971), 103-121. Zbl0218.73036
- [Gu] J.C. Guillot, Existence and uniqueness of a Rayleigh surface wave propagating along the free bowndary of a transversely isotropic elastic half space, Math. Meth. Appl. Sci.8(1986), 289-310. Zbl0606.73024MR845932
- [HL] T. Hargé Et G. Lebeau, Diffraction par un convexe, preprint, Univ. Paris-Sud, 1993.
- [I1] M. Ikawa, On the poles of the scattering matrix for two strictly convex obstacles, J. Math. Kyoto Univ.23-1(1983), 127-194. Zbl0561.35060MR692733
- [I2] M. Ikawa, Precise information on the poles of the scattering matrix for two strictly convex obstacles, J. Math. Kyoto Univ.27-1 (1987),69-102. Zbl0637.35068MR878491
- [I3] M. Ikawa, Trapping obstacles with a sequence of poles of the scattering matrix converging to the real axis, Osaka J. Math.22 (1985), 657-689. Zbl0617.35102MR815439
- [IN] M. Ikehata And G. Nakamura, Decaying and nondecaying properties of the local energy of an elastic wave outside an obstacle, Japan J. Appl. Math.6(1989), 83-95. Zbl0696.73017MR981515
- [K] M. Kawashita, On the local-energy decay property for the elastic wave equation with the Neumann boundary conditions, Duke Math. J.67(1992), 333-351. Zbl0795.35061MR1177309
- [LP1] P.D. Lax And R.S. Phillips, Scattering Theory, New York, Academic Press, 1967. Zbl0186.16301MR217440
- [LP2] P.D. Lax And R.S. Phillips, A logarithmic bound on the location of the poles of the scattering matrix, Arch. Rat. Mech. Anal.40 (1971), 268-280. Zbl0216.13002MR296534
- [M] R.B. Melrose, Polynomial bounds on the distribution of poles in scattering by an obstacle, Journées Équations aux dérivées partielles, Saint-Jean de Monts, 1984. Zbl0621.35073
- [M81] R.B. Melrose And J. Sjöstrand.Singularities of boundary value problems, I, Comm. Pure Appl. Math.31(1978), 593-617. Zbl0368.35020MR492794
- [MS2] R.B. Melrose And J. Sjöstrand, Singularities of boundary value problems, II, Comm. Pure Appl. Math.35(1982), 129-168 Zbl0546.35083MR644020
- [R] Lord Rayleigh, On waves propagated along plane surface of an elastic solid, Proc. London Math. Soc.17(1885), 4-11. Zbl17.0962.01JFM17.0962.01
- [S] M.A. Shubin, Pseudodifferential Operators and Spectral Theory, Springer, Berlin, Heidelberg, New York. 1987. Zbl0616.47040MR883081
- [SZ] J. Sjöstrand AND M. Zworski.The complex scaling method for scattering by strictly convex obstacles, preprint, Mittag-Leffler Inst., 1993. Zbl0839.35095MR1340273
- [SV1] P. Stefanov AND G. Vodev, Distribution of resonances for the Neumann problem in linear ellasticity outside a ball, Ann. Inst. II. Poincaré (Physique Théorique), to appear. Zbl0805.73016MR1281649
- [SV2] P. Stefanov AND G. Vodev, Distribution of resonances for the Neumann problem in linear ellasticity in the exterior of a strictly convex body, submitted. Zbl0846.35139
- [T1] M. Taylor, Rayleigh waves in linear elasticity as a propagation of singularities phenomenon, in Proc. Conf. on P.D.E. and Geometry, Marcel Dekker, New York, 1979, 273-291. Zbl0432.73021MR535598
- [T2] M. Taylor, Pseododifferential Operators, Princeton University Press, Princeton, 1981. Zbl0453.47026MR618463
- [Ti] E.C. Titchmarsh, The Theory of Functions, Oxford Univ. Press, Oxford, 1968. JFM65.0302.01
- [Y] K. Yamamoto, Singularities of solutions to the boundary value problems for elastic and Maxwell's equations, Japan J. Math.14(1988), 119-163. Zbl0669.73017MR945621
- [Va] B.R. Vainberg, Asymptotic Methods in Equations of Mathematical Physics, Gordon and Breach sci. publ., New York. 1988. Zbl0743.35001MR1054376
- [Vo] G. Vodev, Sharp bounds on the number of scattering poles for perturbations of the Laplacian, Comm. Math. Phys.146 (1992), 205-216. Zbl0766.35032MR1163673
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.