Scattering frequencies and Gevrey 3 singularities.
C. Bardos; G. Lebeau; J. Rauch
Inventiones mathematicae (1987)
- Volume: 90, page 77-114
- ISSN: 0020-9910; 1432-1297/e
Access Full Article
topHow to cite
topBardos, C., Lebeau, G., and Rauch, J.. "Scattering frequencies and Gevrey 3 singularities.." Inventiones mathematicae 90 (1987): 77-114. <http://eudml.org/doc/143501>.
@article{Bardos1987,
author = {Bardos, C., Lebeau, G., Rauch, J.},
journal = {Inventiones mathematicae},
keywords = {Scattering frequences; resonances; propagation of singularities},
pages = {77-114},
title = {Scattering frequencies and Gevrey 3 singularities.},
url = {http://eudml.org/doc/143501},
volume = {90},
year = {1987},
}
TY - JOUR
AU - Bardos, C.
AU - Lebeau, G.
AU - Rauch, J.
TI - Scattering frequencies and Gevrey 3 singularities.
JO - Inventiones mathematicae
PY - 1987
VL - 90
SP - 77
EP - 114
KW - Scattering frequences; resonances; propagation of singularities
UR - http://eudml.org/doc/143501
ER -
Citations in EuDML Documents
top- N. Burq, Résonances pour le problème de Dirichlet à l'extérieur d'obstacles convexes à coins en dimension 2
- Olivier Poisson, Étude numérique des pôles de résonance associés à la diffraction d'ondes acoustiques et élastiques par un obstacle en dimension 2
- P. Stefanov, G. Vodev, Distribution of resonances for the Neumann problem in linear elasticity outside a ball
- J. Sjöstrand, Nouvelles majorations sur le nombre de pôles près de l'axe réel pour des obstacles strictement convexes (d'après un travail avec M. Zworski)
- Bernard Lascar, Richard Lascar, A sharp result on the poles localization for a Gevrey convex body
- Johannes Sjöstrand, Resonances for strictly convex obstacles
- G. Vodev, P. Stefanov, Distribution des résonances pour le système de l'élasticité
- Johannes Sjöstrand, A trace formula for resonances and application to semi-classical Schrödinger operators
- Johannes Sjôstrand, Asymptotique des résonances pour des obstacles
- Éric Leichtnam, François Golse, Matthew Stenzel, Intrinsic microlocal analysis and inversion formulae for the heat equation on compact real-analytic riemannian manifolds
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.