Polynomial bound on the distribution of poles in scattering by an obstacle

Richard B. Melrose

Journées équations aux dérivées partielles (1984)

  • page 1-8
  • ISSN: 0752-0360

How to cite

top

Melrose, Richard B.. "Polynomial bound on the distribution of poles in scattering by an obstacle." Journées équations aux dérivées partielles (1984): 1-8. <http://eudml.org/doc/93108>.

@article{Melrose1984,
author = {Melrose, Richard B.},
journal = {Journées équations aux dérivées partielles},
keywords = {smooth compact obstacle; Lax-Phillips scattering theory; scattering matrix; Dirichlet, Neumann or Robin boundary condition; meromorphic; scattering by a potential},
language = {eng},
pages = {1-8},
publisher = {Ecole polytechnique},
title = {Polynomial bound on the distribution of poles in scattering by an obstacle},
url = {http://eudml.org/doc/93108},
year = {1984},
}

TY - JOUR
AU - Melrose, Richard B.
TI - Polynomial bound on the distribution of poles in scattering by an obstacle
JO - Journées équations aux dérivées partielles
PY - 1984
PB - Ecole polytechnique
SP - 1
EP - 8
LA - eng
KW - smooth compact obstacle; Lax-Phillips scattering theory; scattering matrix; Dirichlet, Neumann or Robin boundary condition; meromorphic; scattering by a potential
UR - http://eudml.org/doc/93108
ER -

References

top
  1. [1] P.D. Lax & R.S. Phillips. Scattering theory, Academic Press. Zbl0117.09104
  2. [2] R.B. Melrose. Polynomial bound for the poles in scattering by a potential. J. Funct. Anal (1984). Zbl0621.35073

Citations in EuDML Documents

top
  1. Johannes Sjöstrand, Maciej Zworski, Estimates on the number of scattering poles near the real axis for strictly convex obstacles
  2. G. Vodev, Polynomial bounds on the number of scattering poles for symmetric systems
  3. Mitsuru Ikawa, On the poles of the scattering matrix for two convex obstacles
  4. J. Sjöstrand, Estimations sur les résonances pour le laplacien avec une perturbation à support compact
  5. Mitsuru Ikawa, On poles of scattering matrices for several convex bodies
  6. Maciej Zworski, Fractal Weyl laws for quantum resonances
  7. Georgi Vodev, On the distribution of scattering poles for perturbations of the Laplacian
  8. G. Vodev, Sharp bounds on the number of resonances for symmetric systems
  9. G. Vodev, P. Stefanov, Distribution des résonances pour le système de l'élasticité
  10. Vesselin Petkov, Maciej Zworski, Variation de la phase de diffusion et distribution des résonances

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.