Équations des ondes amorties

G. Lebeau

Séminaire Équations aux dérivées partielles (Polytechnique) (1993-1994)

  • page 1-14

How to cite


Lebeau, G.. "Équations des ondes amorties." Séminaire Équations aux dérivées partielles (Polytechnique) (1993-1994): 1-14. <http://eudml.org/doc/112079>.

author = {Lebeau, G.},
journal = {Séminaire Équations aux dérivées partielles (Polytechnique)},
keywords = {first-order differential system},
language = {fre},
pages = {1-14},
publisher = {Ecole Polytechnique, Centre de Mathématiques},
title = {Équations des ondes amorties},
url = {http://eudml.org/doc/112079},
year = {1993-1994},

AU - Lebeau, G.
TI - Équations des ondes amorties
JO - Séminaire Équations aux dérivées partielles (Polytechnique)
PY - 1993-1994
PB - Ecole Polytechnique, Centre de Mathématiques
SP - 1
EP - 14
LA - fre
KW - first-order differential system
UR - http://eudml.org/doc/112079
ER -


  1. [B-L-R] C. Bardos, G. Lebeau, J. Rauch: Sharp sufficient conditions for the observation, control, and stabilization of waves from the boundary, SIAM J. Control and Optimization, vol. 30, n° 5, (1992), p. 1024-1065. Zbl0786.93009MR1178650
  2. [C-Z] S. Cox, E. Zuazua: The rate at which the energy decays in a dumped string, à paraître à C.P.D.E., et Estimations sur le taux de décroissance exponentielle de l'énergie dans des équations d'ondes, Note C.R.A.S., Paris, 317 (1993), p. 249-254. Zbl0796.35098MR1233421
  3. [G] P. Gérard: Microlocal defect measures, C.P.D.E.16 (1991), p. 1761-1794. Zbl0770.35001MR1135919
  4. [G-L] P. Gérard, E. Leichtnam: Ergodic properties of eigenfunctions for the Dirichlet problem, Duke Math. Journal, vol.71, (1993), p. 559-607. Zbl0788.35103MR1233448
  5. [G-K] I.C. Gohberg, M.G. Krein: Introduction to the Theory of Linear non Self adjoint Operators, Translations of Mathematical Monograph, vol. 18, Amer. Math. Soc.1969. Zbl0181.13504MR246142
  6. [H-S] B. Helffer, J. Sjöstrand: Multiple wells in the semi classical limit I, C.P.D.E.9 (4) (1984), p. 337-408. Zbl0546.35053MR740094
  7. [L] G. Lebeau: Equation des ondes amorties, à paraître dans les actes de l'école "Geometric Methods in Mathematical Physics", Math. Physics Studies Book Series, (Kluwers). 
  8. [M-S] R. Melrose, J. Sjöstrand: Singularities of boundary value problems I, CPAM31 (1978), p. 593-617, II, CPAM35 (1982), p. 129-168. Zbl0546.35083MR492794
  9. [R] L. Robbiano: Fonctions de coût et contrôle des solutions des équations hyperboliques, à paraître dans Asymptotic Analysis. Zbl0882.35015
  10. [R-T] J. Rauch, M. Taylor: Decay of Solutions to Nondissipative Hyperbolic Systems on Compact Manifolds, CPAM28 (1975), p. 501-523. Zbl0295.35048MR397184
  11. [T] L. Tartar: H—measures: a new approach for studying homogenization, oscillations and concentration effects in partial differential equations, Proc. Roy. Soc. Edinburgh Sect.A115 (1993), p. 193-230. Zbl0774.35008MR1069518

NotesEmbed ?


You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.


Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.