Observability properties of a semi-discrete 1d wave equation derived from a mixed finite element method on nonuniform meshes
ESAIM: Control, Optimisation and Calculus of Variations (2010)
- Volume: 16, Issue: 2, page 298-326
- ISSN: 1292-8119
Access Full Article
topAbstract
topHow to cite
topReferences
top- H.T. Banks, K. Ito and C. Wang, Exponentially stable approximations of weakly damped wave equations, in Estimation and control of distributed parameter systems (Vorau, 1990), Internat. Ser. Numer. Math.100, Birkhäuser, Basel (1991) 1–33.
- J.-P. Bérenger, A perfectly matched layer for the absorption of electromagnetic waves. J. Comput. Phys.114 (1994) 185–200.
- E. Bogomolny, O. Bohigas and C. Schmit, Spectral properties of distance matrices. J. Phys. A36 (2003) 3595–3616.
- T.J. Bridges and S. Reich, Numerical methods for Hamiltonian PDEs. J. Phys. A39 (2006) 5287–5320.
- C. Castro and S. Micu, Boundary controllability of a linear semi-discrete 1-d wave equation derived from a mixed finite element method. Numer. Math.102 (2006) 413–462.
- C. Castro, S. Micu and A. Münch, Numerical approximation of the boundary control for the wave equation with mixed finite elements in a square. IMA J. Numer. Anal.28 (2008) 186–214.
- L.C. Cowsar, T.F. Dupont and M.F. Wheeler, A priori estimates for mixed finite element methods for the wave equations. Comput. Methods Appl. Mech. Engrg.82 (1990) 205–222.
- S. Cox and E. Zuazua, The rate at which energy decays in a damped string. Comm. Partial Differ. Equ.19 (1994) 213–243.
- S. Cox and E. Zuazua, The rate at which energy decays in a string damped at one end. Indiana Univ. Math. J.44 (1995) 545–573.
- S. Ervedoza and E. Zuazua, Perfectly matched layers in 1-d: Energy decay for continuous and semi-discrete waves. Numer. Math.109 (2008) 597–634.
- S. Ervedoza and E. Zuazua, Uniformly exponentially stable approximations for a class of damped systems. J. Math. Pures Appl. (to appear).
- S. Ervedoza, C. Zheng and E. Zuazua, On the observability of time-discrete conservative linear systems. J. Funct. Anal.254 (2008) 3037–3078.
- J. Frank, B.E. Moore and S. Reich, Linear PDEs and numerical methods that preserve a multisymplectic conservation law. SIAM J. Sci. Comput.28 (2006) 260–277 (electronic).
- R. Glowinski, Ensuring well-posedness by analogy: Stokes problem and boundary control for the wave equation. J. Comput. Phys.103 (1992) 189–221.
- R. Glowinski, W. Kinton and M.F. Wheeler, A mixed finite element formulation for the boundary controllability of the wave equation. Internat. J. Numer. Methods Engrg.27 (1989) 623–635.
- A. Haraux, Une remarque sur la stabilisation de certains systèmes du deuxième ordre en temps. Portugal. Math.46 (1989) 245–258.
- J.A. Infante and E. Zuazua, Boundary observability for the space semi discretizations of the 1-d wave equation. Math. Model. Num. Ann.33 (1999) 407–438.
- A.E. Ingham, Some trigonometrical inequalities with applications to the theory of series. Math. Z.41 (1936) 367–379.
- S. Labbé and E. Trélat, Uniform controllability of semidiscrete approximations of parabolic control systems. Systems Control Lett.55 (2006) 597–609.
- G. Lebeau, Équations des ondes amorties, in Séminaire sur les Équations aux Dérivées Partielles, 1993–1994, École Polytechnique, France (1994).
- J.-L. Lions, Contrôlabilité exacte, Perturbations et Stabilisation de Systèmes Distribués, Tome 1 : Contrôlabilité exacte, RMA 8. Masson (1988).
- F. Macià, The effect of group velocity in the numerical analysis of control problems for the wave equation, in Mathematical and numerical aspects of wave propagation – WAVES 2003, Springer, Berlin (2003) 195–200.
- A. Münch, A uniformly controllable and implicit scheme for the 1-D wave equation. ESAIM: M2AN39 (2005) 377–418.
- M. Negreanu and E. Zuazua, Convergence of a multigrid method for the controllability of a 1-d wave equation. C. R. Math. Acad. Sci. Paris338 (2004) 413–418.
- M. Negreanu, A.-M. Matache and C. Schwab, Wavelet filtering for exact controllability of the wave equation. SIAM J. Sci. Comput.28 (2006) 1851–1885 (electronic).
- K. Ramdani, T. Takahashi and M. Tucsnak, Uniformly exponentially stable approximations for a class of second order evolution equations – application to LQR problems. ESAIM: COCV13 (2007) 503–527.
- L.R. Tcheugoué Tébou and E. Zuazua, Uniform exponential long time decay for the space semi-discretization of a locally damped wave equation via an artificial numerical viscosity. Numer. Math.95 (2003) 563–598.
- L.R. Tcheugoué Tebou and E. Zuazua, Uniform boundary stabilization of the finite difference space discretization of the 1-d wave equation. Adv. Comput. Math.26 (2007) 337–365.
- L.N. Trefethen, Group velocity in finite difference schemes. SIAM Rev.24 (1982) 113–136.
- R.M. Young, An introduction to nonharmonic Fourier series. Academic Press Inc., San Diego, CA, first edition (2001).
- E. Zuazua, Boundary observability for the finite-difference space semi-discretizations of the 2-D wave equation in the square. J. Math. Pures Appl.78 (1999) 523–563.
- E. Zuazua, Propagation, observation, and control of waves approximated by finite difference methods. SIAM Rev.47 (2005) 197–243 (electronic).