Surfaces in and via spinors
Séminaire de théorie spectrale et géométrie (2004-2005)
- Volume: 23, page 131-144
- ISSN: 1624-5458
Access Full Article
topAbstract
topHow to cite
topMorel, Bertrand. "Surfaces in $\mathbb{S}^3$ and $\mathbb{H}^3$ via spinors." Séminaire de théorie spectrale et géométrie 23 (2004-2005): 131-144. <http://eudml.org/doc/11208>.
@article{Morel2004-2005,
abstract = {We generalize the spinorial characterization of isometric immersions of surfaces in $\mathbb\{R\}^3$ given by T. Friedrich to surfaces in $\mathbb\{S\}^3$ and $\mathbb\{H\}^3$. The main argument is the interpretation of the energy-momentum tensor associated with a special spinor field as a second fundamental form. It turns out that such a characterization of isometric immersions in terms of a special section of the spinor bundle also holds in the case of hypersurfaces in the Euclidean $4$-space.},
author = {Morel, Bertrand},
journal = {Séminaire de théorie spectrale et géométrie},
keywords = {spin geometry; surface; energy-momentum tensor; hypersurface; isometric immersion; spinor bundle},
language = {eng},
pages = {131-144},
publisher = {Institut Fourier},
title = {Surfaces in $\mathbb\{S\}^3$ and $\mathbb\{H\}^3$ via spinors},
url = {http://eudml.org/doc/11208},
volume = {23},
year = {2004-2005},
}
TY - JOUR
AU - Morel, Bertrand
TI - Surfaces in $\mathbb{S}^3$ and $\mathbb{H}^3$ via spinors
JO - Séminaire de théorie spectrale et géométrie
PY - 2004-2005
PB - Institut Fourier
VL - 23
SP - 131
EP - 144
AB - We generalize the spinorial characterization of isometric immersions of surfaces in $\mathbb{R}^3$ given by T. Friedrich to surfaces in $\mathbb{S}^3$ and $\mathbb{H}^3$. The main argument is the interpretation of the energy-momentum tensor associated with a special spinor field as a second fundamental form. It turns out that such a characterization of isometric immersions in terms of a special section of the spinor bundle also holds in the case of hypersurfaces in the Euclidean $4$-space.
LA - eng
KW - spin geometry; surface; energy-momentum tensor; hypersurface; isometric immersion; spinor bundle
UR - http://eudml.org/doc/11208
ER -
References
top- C. Bär, Real Killing Spinors and Holonomy, Commun. Math. Phys. 154 (1993), 509-521. Zbl0778.53037MR1224089
- —,Metrics with Harmonic Spinors, Geom. Func. Anal. 6 (1996), 899–942. Zbl0867.53037MR1421872
- C. Bär, P. Gauduchon and A. Moroianu, Generalized Cylinders in Semi-Riemannian and Spin Geometry, math.DG/0303095. Zbl1068.53030
- H. Baum, Th. Friedrich, R. Grunewald, and I. Kath, Twistor and Killing Spinors on Riemannian Manifolds, Teubner Verlag, Stuttgart/Leipzig, 1991. Zbl0734.53003MR1164864
- J.P. Bourguignon, O. Hijazi, J.-L. Milhorat, and A. Moroianu, A Spinorial approach to Riemannian and Conformal Geometry, Monograph, In preparation, 2004.
- Th. Friedrich, On the spinor representation of surfaces in Euclidean -space, J. Geom. Phys. 28 (1998), no. 1-2, 143–157. Zbl0966.53042MR1653146
- Th. Friedrich and E.-C. Kim, The Einstein-Dirac equation on Riemannian spin manifolds, J. Geom. Phys. 33 (2000), no. 1–2, 128–172. Zbl0961.53023MR1738150
- O. Hijazi, Lower bounds for the eigenvalues of the Dirac operator, J. Geom. Phys. 16 (1995), 27–38. Zbl0823.34074MR1325161
- R. Kusner and N. Schmitt, The Spinor Representation of Surfaces in Space, math.DG-GA/9610005.
- —, The Spinor Representation of Minimal Surfaces, math.DG-GA/9512003
- H.B. Lawson and M.L. Michelsohn, Spin Geometry, Princeton Univ. Press, 1989. Zbl0688.57001MR1031992
- B. Morel, Eigenvalue Estimates for the Dirac-Schrödinger Operators, J. Geom. Phys. 38 (2001), 1–18. Zbl0984.53021MR1817510
- —, The Energy-Momentum tensor as a second fundamental form, math.DG/0302205.
- I.A. Taimanov, The Weierstrass representation of closed surfaces in , Funct. Anal. Appl. 32 (1998), no. 4, 49–62. Zbl0979.53012MR1678856
- A. Trautman, Spinors and the Dirac operator on hypersurfaces I. General Theory, Journ. Math. Phys. 33 (1992), 4011–4019. Zbl0769.58055MR1191759
Citations in EuDML Documents
topNotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.